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Unit |

Finite Differences: Difference Operators—Other Difference Operators — Error propagation in a
difference table.

Chapter 1: Sections-1.1to 1.5

1.1 Introduction:

The statement y = f(x), x, < x < x,, means: corresponding to every value of x in the range
X9 < x < xp, there exists one or more values of y. Assuming that f(x) is single-valued and
continuous and that it is known explicitly, then the values of f(x) corresponding to certain
given values of x, say x,, x4, ..., X, can easily be computed and tabulated. The central problem
of numerical analysis is the converse one: Given the set of tabular values
(%0, ¥0), (x1,v1), (x2,V2), ..., (x,,, v,) satisfying the relation y = f(x) where the explicit
nature of f(x) is not known, it is required to find a simpler function, say ¢ (x), such that f(x)
and ¢ (x) agree at the set of tabulated points. Such a process is called interpolation. If ¢ (x) is
a polynomial, then the process is called polynomial interpolation and ¢(x) is called the
interpolating polynomial. Similarly, different types of interpolation arise depending on whether
¢(x) is a finite trigonometric series, series of Bessel functions, etc. In this chapter, we shall be
concerned with polynomial interpolation only. As a justification for the approximation of an
unknown function by means of a polynomial, we state here, without proof, a famous theorem
due to Weierstrass (1885): if f(x) is continuous in x, < x < x,,, then given any & > 0, there
exists a polynomial P (x) such that

|f(x) — P(x)| < ¢, forall x in (xg,x;,)

This means that it is possible to find a polynomial P(x) whose graph remains within the
region bounded by y = f(x) — e and y = f(x) + ¢ for all x between x, and x,,, however
small € may be.

When approximating a given function f (x) by means of polynomial ¢ (x), one may be tempted
to ask: (i) How should the closeness of the approximation be measured? and (ii) What is the
criterion to decide the best polynomial approximation to the function? Answers to these
questions, important though they are for the practical problem of interpolation, are outside the

scope of this book and will not be attempted here. We will, however, derive in the next section

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.



T e AT

SRS | owen

a formula for finding the error associated with the approximation of a tabulated function by

means of a polynomial.

1.2 Errors in Polynomial Interpolation:

Let the function y(x), defined by the (n + 1) points (x;, y;),i = 0,1,2, ..., n, be continuous
and differentiable (n + 1) times, and let y(x) be approximated by a polynomial ¢,,(x) of
degree not exceeding n such that ¢,,(x;) = y;,i = 0,1,2,...,n ........... (1)

If we now use ¢,, (x) to obtain approximate values of y(x) at some points other than those
defined by Equation (1), what would be the accuracy of this approximation? Since the
expression y(x) — ¢, (x) vanishes for x = xy, x4, ..., X5, We put

y(x) — ¢ (x) = LI, 1 (x) ......... (2)

Where IT,,,1(x) = (x —xg)(x —x1) . (X — xp) oovininnnnl. 3)

and L is to be determined such that Equation (2) holds for any intermediate value of x, say
x=x',xy < x' < x,. Clearly,

= 20)n(x')

Mn+1(x")
We construct a function F(x) such that F(x) = y(x) — ¢, (x) — LI, 1 (x) ........... (5)
where L is given by Equation (4) above,
It is clear that
F(xo) =F(x;) =+ =F(x,) =F(x')=0
that is, F(x) vanishes (n + 2) times in the interval x, < x < x,,; consequently, by the
repeated application of Rolle's theorem, F'(x) must vanish (n + 1) times, F"'(x) must vanish
n times, etc., in the interval x, < x < x,,. In particular, F™* (x) must vanish once in the
interval.
Let this point be given by x = &, x, < ¢ < x,,. On differentiating Eq. (3.5) (n + 1) times
with respect to x and putting x = &, we obtain

0 = y™* (&) — L(n + 1)!

_y™I®
so that L = D e (6)

Comparison of Equations. (4) and (6) yields the results

y™D(E)

mnnﬂ(x')

y(x') — pn(x) =

Dropping the prime on x’, we obtain
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Y(x) — ¢ (x) = 21y (D () o< E<xy o (7)

(n+1)!
which is the required expression for the error. Since y(x) is, generally, unknown and hence we
do not have any information concerning y™+1 (x), formula (7) is almost useless in practical
computations. On the other hand, it is extremely useful in theoretical work in different branches
of numerical analysis. In particular, we will use it to determine errors in Newton's interpolating

formulae which will be discussed in Section 1.6.

1.3 Finite Differences:

Assume that we have a table of values (x;,y;),i = 0,1,2, ...,n of any function y = f(x), the
values of x being equally spaced, i.e., x; = xo, + ih, i = 0,1,2,...,n. Suppose that we are
required to recover the values of f(x) for some intermediate values of x, or to obtain the
derivative of f(x) for some x in the range x, < x < x,,. The methods for the solution to these
problems are based on the concept of the 'differences’ of a function which we now proceed to
define.

1.3.1 Forward Differences:
If yo, V1, V2, ..., ¥ denote a set of values of y, then y; — yo, V2, — V1, ooy Yn — V-1 are called
the differences of y. Denoting these differences by Ay,, Ay;, ..., Ay, _, respectively, we have
Ayo = y1 = Y0, Ay1 = Y2 = Y1, s AYn1 = Yn = Y1
where A is called the forward difference operator and Ay,, Ay;, ..., are called first forward
differences. The differences of the first forward differences are called second forward
differences and are denoted by A2y,, A%y, ... Similarly, one can define third forward
differences, fourth forward differences, etc.
Thus,
Ny = Ay, = Ayo =y, —y1 — (1 — ¥o)
=Y, =21+
Ny =Dy, — A%y =y3 — 2y, + y1 — (V2 — 2y1 + ¥o)
=Y3=3y2 +3y1 =¥
A'yy = By, — Nyy =y, —3y3 + 3y, —y1 — (¥3 — 3y, + 3y, — ¥o)
=Ya — 4y3 + 6y, — 4y + Yo
It is, therefore, clear that any higher-order difference can easily be expressed in terms of the
ordinates, since the coefficients occurring on the right side are the binomial coefficients.

Table 1.1 shows how the forward differences of all orders can be formed:
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Table 1.1 Forward Difference Table

X Yo A A? A3 A* A® A®
Xo Yo Ayo

Xy oy Ay A%y,

X, ¥y Ayp Ny Ny, Aty

x3 y3 Ay, Ay, Ny Ay, Ny, A%,
xy ys Ay Ny Ny, Ay, Dy,

x5 ys Ay, A%y, Ny;

Xe Yo Ays

In practical computations, the forward difference table can be formed in the following way.

For the data points (x;,y;),i = 0,1,2, ...,n and x; = x, + ih, we have

It follows that

Ay =yj+1—yi,j=01,..,,n—-1
Denoting y; as DEL(O0, j), the above equation can be written as

Ay; = DEL(0,j + 1) — DEL(0,j) = DEL(1, )

A'y; = DEL(i — 1,j + 1) — DEL(i — 1,)

which is the i th forward difference of y;.

For the data points (x;,y;),i = 0,1,2, ...,6, we have difference Table 1.2.
Table 1.2 Forward Difference Table

x y A A2 A3 A* AS AS
x, DEL(0,0) DEL(1,0)

x, DEL(0,1) DEL(1,1) DEL(2,0)

x, DEL(0,2) DEL(3,0)

x; DEL(0,3) DEL(1,2) DEL(21) DEL(2,2) DEL(3,1) DEL(4,0) DEL(5,0)
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x, DEL(0,4) DEL(1,3) DEL1) DEL(3,2) DEL(6) DEL(51) DEL(1,0)
xs DEL(0,5) DEL4) DEL(24) DEL(3,3)

x¢ DEL(0,6) DEL(1,5)

In Table 1.2
DEL(4,0) =DEL(3,1) — DEL(3,0)
=DEL(2,2) — DEL(2,1) — [DEL(2,1) — DEL(2,0)]
=DEL(1,3) — DEL(1,2) — 2[DEL(1,2) — DEL(1,1)]
+DEL(1,1) — DEL(1,0)
=DEL(0,4) — DEL(0,3) — 3[DEL(0,3) — DEL(0,2)]
+3[DEL(0,2) — DEL(0,1)] — [DEL(0,1) — DEL(0,0)]
=DEL(0,4) — 4DEL(0,3) + 6DEL(0,2) — 4DEL(0,1) + DEL(0,0)
=y, —4y3 + 6y, —4y; + ¥y
The forward difference table can now be formed by the simple statements:
Doi=1(1)n
Doj=0()n-i
DEL(i, j) = DEL(i - 1, j + 1) - DEL(i - 1, ))
Next j
Next i

End

1.3.2 Backward Differences:
The differences y; — vo, ¥2 — V1, --» Yn — Yn—1 are called first backward differences if they
are denoted by Vy,, Vy,, ..., Vy, respectively, so that

Vy; =y — YO»_VYZ =Y2— Vo

Vyn = ¥Yn = Yn-1
where V is called the backward difference operator. In a similar way, one can define
backward differences of higher orders.

Thus, we obtain
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Vz)’z =Vy, —Vy,

=y, = Y1 — 1 —¥o) =¥2 — 2y1 + Yo
V3y3 = V2Y3 - Vz}’z

=y3 — 3y, + 3y1 — Yo, etc.

With the same values of x and y as in Table 3.1, a backward difference Table 3.3 can be
formed:

Table 1.3 Backward Difference Table

X 0y % V2 V3 V4 Vo A

Xo Yo

X1 1 Vn

X, Y2 Vy, Vi,

x3 y3 Vys Viy; Viys

Xo Yo V% VPyo Vy, Vi,

xs ys Vys Viys Viys  Viyg  Vyg

Xe Yo VYo VZYs VSYe V*ys VSYe V6)’6

1.3.3 Central Differences:
The central difference operator § is defined by the relations
Y1 = Yo = 6Y1/2,¥2 = Y1 = 6¥3/2, s Yn = Yn-1 = O¥n-1/2
Similarly, higher-order central differences can be defined. With the values of x and y as in
the preceding two tables, a central difference Table 3.4 can be formed:
Table 1.4 Central Difference Table

x oy 5 52 53 5* 5° 56

Xo Yo 63’1/2
X1 N 63’3/2 8%y; 533’3/2
X2 Y2 63’5/2 52y, 533’5/2 5%y, 83

X3 ¥z O¥r2 8%y 8%in 8tys 8%yin 6%
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Xy Ya 63’9/2 5%y,
X5 Ys 53’11/2 5%ys

X6 Ve

It is clear from all the four tables that in a definite numerical case, the same numbers occur in

the same positions whether we use forward, backward or central differences. Thus, we obtain

Ayy = Vyy = 8y12, B3y, = Viys = 8%y;5, .

1.3.4 Symbolic Relations and Separation of Symbols:

Difference formulae can easily be established by symbolic methods, using the shift operator
E and the averaging or the mean operator y, in addition to the operators, A,V and & already
defined.

The averaging operator u is defined by the equation:

1
Wyr =5 ()’r+1/2 + Yr—1/2)

The shift operator E is defined by the equation:

Ey, = Yri1
which shows that the effect of E is to shift the functional value y, to the next higher value
vr+1- A second equation with E gives

E*y, = E(EY,) = Eyri1 = Yri2

and in general,

E™Yr = Yrin
It is now easy to derive a relationship between A and E, for we have

Ayy =y1 = Yo = Eyo —yo = (E = D)y,
and hence
A=E—-1o0r E=1+A ......())
We can now express any higher-order forward difference in terms of the given function
values. For example,
Ny = (E—1)°yo = (E®> =3E* +3E — 1)yo = y3 — 3y, + 3y1 — Yo

From the definitions, the following relations can easily be established:
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V=1-E1
6=E%—E_%, ,u=%(E1/2+E‘1/2), .......... ()
A = VE = §E'/?,

p? =1+ (1/4)6?
As an example, we prove the relation
p? =1+ (1/4)6%
We have, by definition,
1
wyr = 5 (3’r+1/2 + Yr—1/2)
1
=S (EV2y. + E7V/2y,)
1
=3 (EYV2 + E-Y/2)y,.
Hence
1 1/2 -1/2
and
2_Yip 1/2)?
wr = (EV2 + E7/2)
1
=1 (E+E1+2)
1
= 2| (B2 - E712)" + 4]
1
= Z (62 + 4')

We therefore have

Finally, we define the operator D such that

d
Dy(x) = =y ().

To relate D to E, we start with the Taylor's series

2 3

h h
yG+h) =y@) +hy' () +o57y"(0) + 57y +

This can be written in the symbolic form

2D2 h3D3

Ey(x)=<1+hD+ T + 3 +-~->y(x).

10
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Since the series in the brackets is the expansion of e"*?, we obtain the interesting result

E=et .. ........(3)

Using the relation (1), a number of useful identities can be derived. This relation is used to

separate the effect of E into that of the powers of A and this method of separation is called the

method of separation of symbols. The following examples demonstrate the use of this

method.
Example 1:
Using the method of separation of symbols, show that

nn—1)

n —
Au,_p, =u, —nu,_q + >

Uy + oo F (_1)nux—n

Solution:
To prove this result, we start with the right-hand side. Thus,

nn—1) n
Uy = NUy_q1 + Tux—z + o+ (1) Uy
nn—1)
=u, —nE u, + ———E2u, + -+ (—1D)"E T,
nn-1
= [1 —nE™1 4+ %E‘Z + o+ (CD"ET | uy

= (1 - E YH"u,

= A"E "u,
=AUy p

which is the left-hand side.

Example 2:
Show that
x? x?
e* (uo + xAu, + EAZuO + ) =Up +UrX + Uy oyt
Solution:
Now,

11
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. x2 X . xZAZ
e u0+xAu0+?Auo+--- =e*|1+xA+ T + U
— exexAuO — ex(1+A)u0

— p,XE
=e*u,

x?E?
= <1+xE+ o +--->u0

X2

?uz + ces

which is the required result.

=Ug +xuy +

1.4. Detection of Errors by Use of Difference Tables:

Difference tables can be used to check errors in tabular values. Suppose that there is an error
of +1 unit in a certain tabular value. As higher differences are formed, the error spreads out
fanwise, and is at the same time, considerably magnified, as shown in Table 1.5.

Table 1.5 Detection of Errors using Difference Table

y A A2 AP AT AS

0 O

0O 0 O
0O 0 O
0 O

This table shows the following characteristics:
(1) The effect of the error increases with the order of the differences.

(i1) The errors in any one column are the binomial coefficients with alternating signs.

12
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(iv) The maximum error occurs opposite the function value containing the error. These facts

can be used to detect errors by difference tables. We illustrate this by means of an example.

*The student should note that Equation (1) does not mean that the operators E and A have
any existence as separate entities; it merely implies that the effect of the operator E on y, is
the same as that of the operator (1 + A) on yj.

Example 3:

Consider the following difference table:

X y A A? A3 A*

1 3010

2 3424 414 -36

3 3802 378 -75 +39 +139

4 4105 303 +64 -132 -271

5 4772 297 -68 +49 +181

6 5051 280 -16 -46
7 5315 264
8

The term -271 in the fourth difference column has fluctuations of 449 and 452 on either side
of it. Comparison with Table 3.5 suggests that there is an error of -45 in the entry for x = 4.
The correct value of y is therefore 4105 + 45 = 4150, which shows that the last-two digits
have been transposed, a very common form of error. The reader is advised to form a new
difference table with this correction, and to check that the third differences are now practically
constant.

If an error is present in a given data, the differences of some order will become alternating in
sign. Hence, higher-order differences should be formed till the error is revealed as in the above
example. If there are errors in several tabular values, then it is not easy to detect the errors by

differencing.
13
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1.5 Differences of a Polynomial:
Let y(x) be a polynomial of the nth degree so that
y(x) = agx™ + a;x™ 1 + a,x™? + --- + a,. Then we obtain

y(x+h) —y(x)=aol(x + )" —x"] + a;[(x + ) —x™"1] + -
= ag(nh)x™ 1 +ajx™ 2 + -+ a,

where a3, aj, ..., a,, are the new coefficients.
The above equation can be written as

Ay(x) = ag(nh)x™ 1 + ajx™ 2 + - + a,,
which shows that the first difference of a polynomial of the nth degree is a polynomial of
degree (n — 1). Similarly, the second difference will be a polynomial of degree (n — 2), and
the coefficient of x™~2 will be agn(n — 1)h2.
Thus the nth difference is ayn! h™, which is a constant. Hence, the (n + 1) th, and higher
differences of a polynomial of nth degree will be zero. Conversely, if the nth differences of a
tabulated function are constant and the (n + 1) th, (n + 2) th, ..., differences all vanish, then
the tabulated function represents a polynomial of degree n. It should be noted that these results
hold good only if the values of x are equally spaced. The converse is important in numerical
analysis since it enables us to approximate a function by a polynomial if its differences of some

order become nearly constant.

Exercises:
1.Form a table of differences for the function f(x) = x3 + 5x — 7 for
x =-1,0,1,2,3,4,5. Continue the table to obtain f(6) and f(7).
2. Evaluate
(a) A%x3
(b) A%(cos x)
(©) Al(x + 1) (x + 2)]
(d) A(tan~! x)

f(x)

3. Locate and correct the error in the following table:

14
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4.5 5.0 5.5

y 432 483 527 547 6.26 6.79 7.23

4. Locate and correct the error in the following table:

x 1.00 1.05 1.10 1.15 1.20 1.25 1.30

eX 27183 2.8577 3.0042 3.1528 3.3201 3.4903 3.6693

5. Prove the following:

@) ¥ = Vxo1 F Az + A2y g+ o+ Ay + Ay (i)

() Ay = Yxan = "CiYxin-1+ "CoYxsn—z + -+ (1) "y

@y +y2 4+ +yn="Cy + "CAy + -+ Ay,

6. From the following table, find the number of students who obtained marks between 60
and 70 :

Marks obtained 0—-40 40—-60 60—80 80-—100 100- 120

No. of students 250 120 100 70 50

7. Find the polynomial which approximates the following values:

x 3 4 5 6 7 8 9

y 13 21 31 43 57 73 91

If the number 31 is the fifth term of the series, find the first and the tenth terms of the

series.

8. Find £(0.23) and £ (0.29) from the following table:

x 0.20 0.22 0.24 0.26 0.28 0.30

f(x) 16596 1.6698 1.6804 1.6912 1.7024 1.7139

15
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Unit Il

Interpolation: Newton’s Interpolation Formulae — Central Difference Interpolation
Formulae: Gauss Forward and Backward and Sterling’s (only) — Lagrange’s Interpolation
Formula — Divided Differences— Newton’s Divided Differences formula.

Chapter 2: Sections-2.1 to 2.5

2.1. Newton's Formulae for Interpolation:

Given the set of (n + 1) values, viz., (xq, Vo), (X1, ¥1), (X2, ¥2), .., (X, V), 0f x and y, it
is required to find y,, (x), a polynomial of the nth degree such that y and y,, (x) agree at
the tabulated points. Let the values of x be equidistant,

ie. letx; =x,+ih,i=0,12,..,n

Since y, (x) is a polynomial of the nth degree, it may be written as

Yn(X) = ag+a;(x —x) + az(x — x0)(x — x1)
taz;(x —xp)(x—x)x—x)+- .l (1)
+a,(x — x0) (x — x1)(x — x3) ... (x — xpp_1).

Imposing now the condition that y and y,, (x) should agree at the set of tabulated points,
we obtain

. _Y1=Y _ Ayo, _ A%y . _ Dy, _ Ay
Qo= Yor = T T Th P2 T e B3 T s T I T gy

Setting x = x, + ph and substituting for a,, a4, ..., a,, Equation (1) gives

p(p—1) p(p—1)(p-2) p(p—1)(p-2).....(p—n+1)
Eo Wy + B My 4t " A"y,

Yn(X) =yo + pAy, +
which is Newton's forward difference interpolation formula and is useful for
interpolation near the beginning of a set of tabular values.

To find the error committed in replacing the function y(x) by means of the polynomial
Yn (X)),

(x=x0)(X=X1)..(Xx—Xn)
() = yn (1) = Ty (), xp < E <Xy 3)

As remarked earlier we do not have any information concerning y ™+ (x), and
therefore, formula given in Equation (3) is useless in practice. Nevertheless,

if y(+1(x) does not vary too rapidly in the interval, a useful estimate of the derivative
can be obtained in the following way. Expanding y(x + h) by Taylor's series theorem,

we obtain

16

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.



Y@ +h) = y(@) +hy' () + 2y () + -+
Neglecting the terms containing h? and higher powers of h, this gives

Y () = =[y(x + h) = y(®)] = Ay(x).

Writing y'(x) as Dy(x) where D = d/dx, the differentiation operator, the above
equation gives the operator relation

=LA andso D1 = LA+t
h hn+1
We thus obtain y "1 (x) ~ #A"“y(x) ........... 4)
Equation (3) can, therefore, be written as
_ _ p@-D®-2)..(p—") rn+1
y(x) —yn(x) = i) A2y (§) e (5)

in which form it is suitable for computation.
Instead of assuming y,, (x) as in Equation (1), if we choose it in the form

Yn(x) =ao + a,(x — xn) + a(x — xn)(x - xn—l)

+as(x — x,) (x = xp1 ) (x — xp-2) + -

+an(x - xn)(x - xn—l) o (= xl)
and then impose the condition that y and y,, (x) should agree at the tabulated points
Xn, Xn—1, --» X2, X1, Xo, We Obtain (after some simplification)

p(p+1) V2 p(p+1)..(p+tn—-1) vy,
2!

Yn(x) =y, + pVy, + Yot ot =T V" (6)
where p = (x — x,,) /h.

This is Newton's backward difference interpolation formula and it uses tabular values to
the left of y,. This formula is therefore useful for interpolation near the end of the tabular
values.

It can be shown that the error in this formula may be written as

p(p+1)(p+2)...(p+n)
(n+1)! Vn+1y<€) ........... (7)

y(x) = yn(x) =
where x, < x < x, and x = x,, + ph.

The following examples illustrate the use of these formulae.

Example 1:

Find the cubic polynomial which takes the following values:

y(1) = 24,y(3) = 120,y(5) = 336, and y(7) = 720. Hence, or otherwise, obtain the
value of y(8).

Solution:

17
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We form the difference table:

D6
3 120 120

216 45
5 336 168

354
T 720

Here h = 2. With x, = 1, we have x = 1 + 2p or p = (x — 1) /2. Substituting this value

of p in equation (2), we obtain

o0 = 24 + 52 6+ EELEE ) 50y 4 LN ) 4

2 2
=x34+6x%+11x + 6.

To determine y(8), we observe that p = 7/2. Hence, Eq. (3.10) gives:

y(8) = 24 + 2 (96) + ZR2D 170y  UDT2ZDE/2Z2) 48y = 990,
2 2 6

Direct substitution in y(x) also yields the same value.

Note:

This process of finding the value of y for some value of x outside the given range is
called extrapolation and this example demonstrates the fact that if a tabulated function is
a polynomial, then both interpolation and extrapolation would give exact values.
Example 2:

Using Newton's forward difference formula, find the sum
S,=13+4+23+4+33+..-+n3

We have

Sper =134234+33+--4+n3+ (n+1)3

Hence

Snt1— Sn = M+ 1)°

orAS, = (n+1)3

Solution:

It follows that

A%S, =AS, .1 —AS,=(n+2) —(n+1)3=3n*+9n+7
A3S, =3n+1)?+9n+7—-(Bn? +9n+7) =6n+12
A*S, =6(n+1)+12—(6n+12) =6

18
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Since A°S,, = A®S,, = --- =0, S, is a fourth-degree polynomial in n.
Further,

S, = 1,AS, = 8,A%S, = 19,A3S, = 18,A*S, = 6

Equation (2) gives

Sp =1+ (n— 1)(8) + T2 (19) + ERERET
(n-1)(n-2)(n-3)(n—4)

(18)

+ ” (6)
=Int 4 on3 4+ 1n2
4 2 4
_[n(n+1)]2
== -
Example 3:

Values of x (in degrees) and sin x are given in the following table:

x (in degrees) sin x
15 0.2588190
20 0.3420201
25 0.4226183
30 0.5
35 0.5735764
40 0.6427876

Determine the value of sin 38°.

The difference table is
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The difference table is

X sin x A A2 A* at AS
15  0.2588190
0.0832011
20 0.3420201 ~0.0026029
0.0805982 ~0.0006136
25 0.4226183 ~0.0032165 0.0000248
0.0773817 ~0.0005888 0.0000041
30 05 ~0.0038053 0.0000289
0.0735764 _0.0005598
35 (0.5735784 ~0.0043652
0.0692112

40 0.642T8TE

To find sin 38°, we use Newton's backward difference formula with x,, = 40 and

x = 38. This gives

X=X 38—-40 2
p=""L= =—-2=-04.
h 5 5

Hence, using Equation (6), we obtain

—-0.4(—0.4+1)

¥(38) =0.6427876 — 0.4(0.0692112) + ==

+ EODEOMDE04D) () 0005599)

6
4 (—o.4><—o-4+1);;0~4+2>(—°~4+3) (0.0000289)
4 CONCOHDE0HD00044) (,0900041)

=0.6427876 — 0.02768448 + 0.00052382 + 0.00003583 — 0.00000120
=0.6156614.

Example 4:

(—0.0043652)

Find the missing term in the following table:

x y
0 1
1 3
2 9
3 -
4 81

Explain why the result differs from 33 = 27.
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Solution:

Since four points are given, the given data can be approximated by a third-degree
polynomial in x. Hence A*y, = 0. Substituting A = E — 1 and simplifying, we get
E*y, — 4E3y, + 6E*y, — 4Ey, +yo = 0

Since E"y, = y,, the above equation becomes

Yo —4ys + 6y, —4y;1 +yo =0

Substituting for y,, v4, ¥, and y, in the above, we obtain

y3 =31

The tabulated function is 3* and the exact value of y(3) is 27 . The error is due to the
fact that the exponential function 3* is approximated by means of a polynomial in x of
degree 3.

Example 5:

The table below gives the values of tan x for 0.10 < x < 0.30 :

y
x

= tanx
0.10 0.1003
0.15 0.1511
0.20 0.2027
0.25 0.2553
0.30 0.3093

Find : (a) tan 0.12 (b) tan 0.26, (c) tan 0.40 and (d) tan 0.50.

The table of difference is
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X ¥ A A A 4
0.10 0.1003
0.0508
0.15 0.1511 0.0008
0.0516 0.0002
0.20 0.2027 0.0010 0.0002
0.0526 0.0004
0.25 0.2553 0.0014
0.0540
0.30 0.3093

(a) To find tan(0.12), we have 0.12 = 0.10 4+ p(0.05), which gives p = 0.4. Hence,
equation(2) gives

0.4(0.4—1)

tan(0.12) =0.1003 + 0.4(0.0508) + ===

(0.0002)

04(04-1)(04-2)(04=3) (5 52)
24 .

(0.0008)

N 0.4(0.4—1)(0.4—2)

+
=0.1205.
(b) To find tan(0.26), we have 0.26 = 0.30 + p(0.05), which gives p = —0.8. Hence,

Equation (6) gives

-0.8(—0.8+1)

tan(0.26) =0.3093 — 0.8(0.0540) + ———

—0.8(—0.8+1)(—0.8+2) 0 0004.)

6
—0.8(—0.841)(—0.842)(—0.843) (0.0002)

24

(0.0014)
+

+
=0.2662
Proceeding as in the case (i) above, we obtain

(c) tan(0.40) = 0.4241, and

(d) tan(0.50) = 0.5543.

The actual values, correct to four decimal places, of tan(0.12),tan(0.26), tan(0.40) and
tan(0.50) are respectively 0.1206,0.2660,0.4228 and 0.5463. Comparison of the

computed and actual values shows that in the first-two cases (i.e. of interpolation) the

results obtained are fairly accurate whereas in the last-two cases (i.e. of extrapolation) the
errors are quite considerable. The example therefore demonstrates the important result that
if a tabulated function is other than a polynomial, then extrapolation very far from the table

limits would be dangerous-although interpolation can be carried out very accurately.
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2.2. Central Difference Interpolation Formulae:

In the preceding section, we derived and discussed Newton's forward and backward

interpolation formulae, which are applicable for interpolation near the beginning and end

respectively, of tabulated values. We shall, in the present section, discuss the central

difference formulae which are most suited for interpolation near the middle of a tabulated

set. The central difference operator § was already introduced in Section 1.3.3.

The most important central difference formulae are those due to Stirling, Bessel and
Everett. These will be discussed in Sections 2.2.2, 2.2.3 and 2.2.4, respectively. Gauss's
formulae, introduced in Section 2.2.1 below, are of interest from a theoretical stand-point

only.

2.2.1. Gauss' Central Difference Formulae:

In this section, we will discuss Gauss' forward and backward formulae.

Gauss' forward formula

We consider the following difference table in which the central ordinate is taken for

convenience as y, corresponding to x = x,.

The differences used in this formula lie on the line shown in Table 3.6. The formula is,

therefore, of the form

Yp = Yo + G1Ayy + G,0%y_; + G3A3y_y + GyAty_, + -

where Gy, G, ... have to be determined. The y,, on the left side can be expressed in terms

of yo, Ay, and higher-order differences of y,, as follows:

Table 2.1. Gauss' Forward Formula

x ¥ A .__.12 ..‘13 ___14 _.15 jE
3 Y3
Ay 3
Xz ¥-2 -"nzi-'_g
Ay 5 Ady 4
X 4 ¥ ﬁ?F_z 35?—3
AY_4 5 A%y 5 4 A%y g 5
] Yo ATy 4 ATy oz~ ATY_a™,
x\“ﬂ?n/ R“f;_‘{/ ._15:,,_2/
X1 ¥ Ayq Aty 4
Ay A%,
2 ya ﬂzr1
Aya
X3 ¥a
¥p = EPy,
Clearly, = (1 + A)Py,, using relation equation(1)

-1 -1)(p—-2
=yo+pAyo+p(pZ! )Azyo_l_p(p 3)!(10 )A3y0+-~-
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Similarly, the right side of Equation (1) can also be expressed in terms of y,, Ay, and
higher-order differences. We have
Ay_; = NEy,

=A%(1+ )"y

=N —A+A - A+ )y,

= £ (yp — Ayp + A%y — A%yp + )

= A%y, — Ny, + Atyy — Byy + -
Ny_i = By, — Ay, + Dy, — Ay + -
Aty_, = A*E™?y,

= A1+ D)%y,

= A*(yp — 28y, + 34%y, — 44%y, + )

= A*yy — 205y, + 308y, — 407y, + -+
Hence Equation (1) gives the identity

p(P-1) A2 p(p—1)(p-2) ,3
TA Yo +———A

Yo + pAy, + - Yo

+19(19—1)(1:!—2)(19—3) Atyy +

=Yo + G1Ay, + G2 (A% — A%y + Atyy — A%y + )
+G3(D%yo — Ay, + A%y, — ASy, + +++)
+G,(A*yg — 205y, + 308y — 407 yo + +) v . (2)

Equating the coefficients of Ay,, A%y,, A%y, etc., on both sides of equation (2), we

obtain
Gi=p
_ p(p-1) _ (p+)p(p-1)
Gp=—"—,Gs=""—" ... (3)

(p+)p(p-1)(p-2)
Gy = 4!

Gauss' backward formula
This formula uses the differences which lie on the line shown in Table 2.2.
Table 2.2 Gauss' Backward Formula

x ¥ A a? a3 At A5 a8
x4 ¥
/ﬂy—1\ /33)"_2,“\ //15)"_3_\\
xg ¥o '-‘12}‘_1 14)’_2 iﬁ)"_a/
Ayg A%y 4 A%y 5
X ¥

Gauss' backward formula can therefore be assumed to be of the form

Vp = Yo + GiAy_1 + GoAy_1 + GiN3y_, + GiA*y_, + -+ (4)
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where G1, G5, ... have to be determined. Following the same procedure as in Gauss'

forward formula, we obtain

Example 1:

From the following table, fi

G, =p )

I _ p(p+1)
G, = 21’

/ (p+)p(p-1)
Gy = — > ..(5)
G = (p+2)(p+p(p-1)

4 T 4!

)

nd the value of e17 using Gauss' forward formula:

X e*
1.00 2.7183
1.05 2.8577
1.10 3.0042
1.15 3.1582
1.20 3.3201
1.25 3.4903
1.30 3.6693
We have
1.17 = 1.15 + p(0.05)
which gives
002 _ 1
T 005 4
The difference table is given below.
x e* A a2 a3 At
1.00 2.7183
0.1384
1.08 2.8577 0.0071
0.1465 0.0004
1.10 3.0042 0.0075 0
0.1540 0.0004
15 3.1582 0.0079 ]
" 1 N\n.mm/ \‘\xo.oom/
1.20 3320 0.0083 0.0001
0.1702 0.0005
1.25 3.4903 0.0088
0.1780
1.30 3.6693
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Using formulae (1) and (3), we obtain

e =3.1582 + 2 (0.1619) + X2 (0,0079)

+ (2/5+1)(225)(2/5—1) (0.0004)
=3.1582 + 0.0648 — 0.0009
=3.2221

2.2.2 Stirling's Formula:
Taking the mean of Gauss' forward and backward formulae, we obtain

Ay_1+A 2 p(p?—1) A3y_;+A3y_
Yp =yo + p R L P g2y (3! ) Sty (6)

Formula given in Equation (6) is called Stirling's formula.

2.3. Lagrange's Interpolation Formula:

Let y(x) be continuous and differentiable (n + 1) times in the interval (a, b). Given the
(n + 1) points (xq, yo), (x1,v1), ..., (x5, y,) Where the values of x need not necessarily
be equally spaced, we wish to find a polynomial of degree n, say L, (x), such that
L,(x)=y(x)=vy,i=01,..,n.......... (1

Before deriving the general formula, we first consider a simpler case, viz., the equation
of a straight line (a linear polynomial) passing through two points (x,,y,) and (x, v;).

Such a polynomial, say L, (x), is easily seen to be

X—X1 X—Xo

Li(x) = X1 Yo + X1 1
=lo(X)yo + LX)y, = X1y L)Y e e (2)
where I, (x) = ;:‘_’;11 and 1;(x) = % ........... (3)

From Equation (1), it is seen that
lo(xo) = 1,15(xy) =0,1;(xg) =0,1;(x;) = 1.
These relations can be expressed in a more convenient form as
li(xj)z{(l):g;:. e (4)
The [;(x) in Equation (2) also have the property
i=0 L) =L () + L(x) =

Equation (2) is the Lagrange polynomial of degree one passing through two points (x,, y,)

X—X1 X—Xg __
0—

Xo—X1 X1—Xg

and (x,,y,). In a similar way, the Lagrange polynomial of degree two passing through

three points (xq, v,), (x1, 1) and (x5, y,) is written as
Ly(x) = Xi-o L(X)y;
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where the [;(x) satisfy the conditions gl\TeﬁTn Equations. (4) and (5).

To derive the general formula, let L, (x) = ag + a;x + ax? + -+ a,x™ ......... (6)

be the desired polynomial of the nth degree such that conditions given in Equation (1)
(called the interpolatory conditions) are satisfied. Substituting these conditions in Eq. (6),
we obtain the system of equations

Yo = Qg + a1xg + ApxE + - + anx)
yl = ao + a1X1 + alez + + anX{l }

y2 =a0+a1x2+a2x22+...+anx£l ......... (7)
VYn = Qg + A1y + Axx2 + - + anx,’})
1 xo x5 - x¥
: : 1o x, X2 xT
The set of Equations. (7) will have a solution if | “* ™ H=0 ... (8)
1 x, x2 - xP

The value of this determinant, called Vandermonde's determinant, is

(g — x1) (g — x2) . (xg = 2) (g — 2x2) oo (g — X) e (o — X30).

Eliminating a,, a4, ..., a,, from Equations. (6) and (7), we obtain

L,(x) 1 x x? - x"
Yo 1 x x§ - x§
vy, 1 x, x2 - x|=0 .. )
Yo 1 x, x2 - xP

which shows that L,,(x) is a linear combination of y,, v, v, ..., y,. Hence we write
Ly(x) =20 Li()y; «oeenenen (10)

where [; (x) are polynomials in x of degree n. Since Ln(xj) =y;forj=0,1,2,..,n,
Equation (5) gives

L(x)=0 if i+ j}

i(x;)=1 forallj

which are the same as Equation(4). Hence [;(x) may be written as

ll(x) — (x_xo)(x_xl)(x_xl—l)(x_xl+1)(x_x‘n) (1 1)

(xi=2x0) (xj=x1) (=21 1) (X=X 1) (X=20) T

which obviously satisfies the conditions (4).

If we now set
M ()= —x0)(x—x1) . (x —x;1)x —x) (¢ — Xj31) e (X — X)) eveninin (12)
then
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, d
Hn+1(xi) = i [Hn+1(x)]X=xi

so that Equation (11) becomes [;(x) = M (13)

(x_xi)n;l+1(xi)

Hence Equation (10) gives L,,(x) = X L’C)l) Vi ceenennnn (14)

=0 (x=x)M}, 14 (x
which is called Lagrange's interpolation formula. The coefficients [;(x), defined in Eq.

(11), are called Lagrange interpolation coefficients. Interchanging x and y in Equation

: _ymn Mn41(¥) ,
(14), we obtain the formula L, (y) = X7, Oyl G X e (15)

which is useful for inverse interpolation.

It is trivial to show that the Lagrange interpolating polynomial is unique. To prove this,
we assume the contrary. Let L, (x) be a polynomial, distinct from L,, (x), of degree not
exceeding n and such that

L,(x))=v;,i=012,..,n

Then the polynomial defined by M (x), where

M(x) = Ly (x) = L (x)

vanishes at the (n + 1) points x;,i = 0,1, ..., n. Hence we have

M, (x) =0,

which shows that L,, (x) and L,,(x) are identical.

A major advantage of this formula is that the coefficients in Equation (15) are easily
determined. Further, it is more general in that it is applicable to either equal or unequal
intervals and the abscissae x, x4, ..., x,, need not be in order. Using this formula it is,
however, inconvenient to pass from one interpolation polynomial to another of degree
one greater.

The following examples illustrate the use of Lagrange's formula.

Example 1:

Certain corresponding values of x and log,, x are

(300,2.4771), (304,2.4829), (305,2.4843) and (307,2.4871). Find log,, 301.

From formula given in Eq. (14), we obtain

logye 301 =2EHEO 5 4771y + LEDEO (5 48709)

(=4 (-5)(-7) @ (-1)(-3)
(1)(=3)(=6) (1)(=3)(=4)
+—(5) ) (2.4843) + B (2.4871)
=1.2739 + 4.9658 — 4.4717 + 0.7106
=2.4786.
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Example 2:
Ify, =4,y; =12,y, =19and y, = 7, find x.
Using Equation (15), we have

(=5)(=12) (3)(=12) 3)(=5)
=——""(1 3 4
(—8)(—15)( )+ @7 3+ (15)(7) )
4

—1,27_ 12
2 14 7
= 1.86.
The actual value is 2.0 since the above values were obtained from the polynomial

y(x) = x? + 3.

Example 3:
Find the Lagrange interpolating polynomial of degree 2 approximating the function y =

In x defined by the following table of values. Hence determine the value of In 2.7.

x y=lIlnx

2 0.69315
2.5 0.91629
3.0 1.09861
We have
lo(x) = E22D39 _ 952 _ 115 4+ 15

(—0.5)(~1.0)

Similarly, we find

;(x) = —(4x%? — 20x + 24) and [,(x) = 2x2? — 9x + 10.
Hence

L,(x) =(2x2 — 11x + 15)(0.69315) — (4x2 — 20x + 24)(0.91629)
+(2x% — 9x + 10)(1.09861)
= —0.08164x2 + 0.81366x — 0.60761,

which is the required quadratic polynomial.

Putting x = 2.7, in the above polynomial, we obtain

In2.7 ~ L,(2.7) = —0.08164(2.7)2 + 0.81366(2.7) — 0.60761 = 0.9941164.
Actual value of In 2.7 = 0.9932518, so that

| Error |= 0.0008646.

Example 4:

The function y = sin x is tabulated below
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3 R

=K

= =
x y =sinx

0 0
n/4 0.70711
n/2 1.0

Using Lagrange's interpolation formula, find the value of sin(/6).

We have
. o (m/6-0)(m/6—m/2) (t/6—-0)(/6—1/4)
S 6 (t/4-0)(m/4—1/2) (0'70711) + (t/2-0)(/2—m/4) (1)
8 1
=-(0.70711) — -
_ 4.65688
9
= 0.51743
Example 5:

Using Lagrange's interpolation formula, find the form of the function y(x) from the

following table

x oy
0 -12
1 0

3 12
4 24

Since y = 0 when x = 1, it follows that x — 1 is a factor. Let y(x) = (x — 1)R(x).
Then R(x) = y/(x — 1). We now tabulate the values of x and R(x).

x R(x)
0 12
3 6
4 8

Applying Lagrange's formula to the above table, we find
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R(x) = W(lz) + W(@ +

(=3)(=9 (B-0(3-49 (4—0)(4—3)( )
= (x —3)(x —4) — 2x(x — 4) + 2x(x — 3)
=x%—5x+12.

Hence the required polynomial approximation to y(x) is given by

y(x) = (x — 1)(x? — 5x + 12)

2.3.1. Error in Lagrange's Interpolation Formula:

Equation (3.7) can be used to estimate the error of the Lagrange interpolation formula for
the class of functions which have continuous derivatives of order up to (n + 1) on [a, b].
We, therefore, have

y(x) = L, (x) = Ry (x) = %y("“)(f), a<&E<D ... (1)
and the quantity E,, where E;, = r[2%>](|Rn €3] )

may be taken as an estimate of error. Further, if we assume that
|y D (@) < Mpy,a<E<b......... 3)

then E;, < mﬁ’;ﬁmaxlﬂnﬂ(x)l ............ 4)

The following examples illustrate the computation of the error.

Example 1:

Estimate the error in the value of y obtained in Example 3.15.

Since y = Inx, weobtain y' = 1/x,y" = —1/x? and y"’ = 2/x3. It follows that

y'"' (&) = 2/&3. Thus the continuity conditions on y(x) and its derivatives are satisfied in

[2,3]. Hence R, (x) = (x—Z)(x—62.5)(x—3)€i3, 2 < & <3But

1
8

1 1
gl <7~

When x = 2.7, we therefore obtain

(2.7-2)(2.7-2.5)(2.7-3) 2| __ 0.7x0.2x0.3
6 8 3x8

IR, ()] < = 0.00175

which agrees with the actual error given in Example 3.15.
Example 2:
Estimate the error in the solution computed in Example 3.16.

Since y(x) = sin x, we have

y'(x) =cosx,y"(x) = —sinx,y"'(x) = —cosx

Hence |y"'(§)] < 1.

When x = /6.

IR, (x)| < (ﬂ/6—0)(ﬂ/6—:/4)(7f/6—7f/2) — %glﬂ_zg — 0.02392
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which agrees with the actual error in théﬂlslz)lﬂl]'tion obtained in Example 3.16.

2.4. Divided differences and their properties:

The Lagrange interpolation formula, derived in Section 3.9.1, has the disadvantage that if
another interpolation point were added, then the interpolation coefficients [; (x) will have
to be recomputed. We therefore seek an interpolation polynomial which has the property
that a polynomial of higher degree may be derived from it by simply adding new terms.
Newton's general interpolation formula is one such formula and it employs what are called
divided differences. It is our principal purpose in this section to define such differences
and discuss certain of their properties to obtain the basic formula due to Newton.

Let (xo, Vo), (X1, ¥1), -.., (xp, v,) be the given (n + 1) points. Then the divided
differences of order 1,2, ..., n are defined by the relations:

_ Y17 Yo )
[xOI xl] - X1—Xg )
[x1,%2]—[x0,%1]
X0, X1, X =,
[x0, %1, %2] X2—Xo SR (1§

_ [x1,%2,Xn]=[X0,X1, - Xn—1]

Xn—Xo J

[X0, X1, o) X ]

Even if the arguments are equal, the divided differences may still have a meaning. We
then set x; = x, + € so that
[xOle] = 111’18 [xOIxO + 8]

E—

= lim Y(xo+&)—y(x0)
-0 &
= y'(x,), if y(x) is differentiable.
Similarly, [xg, xq, ..., Xo] = yixo) )

r!
(r+1) arguments

From Equation (2), it is easy to see that

Yo Y1
Xg, X1| =——+—=1|X1,X01l.
[ 0 1] Xo—X1 X1 X0 [ 1 0]
Again,
1 Y2=Y1 Y1—YO)
Xo, X1, X = —
[ 01 2] X220 <x2_x1 X120

1 1 1
il v v
X2—Xg LX2—=X1 X2—X1 X1—Xo X1—Xo

= Yo V1 y2 (3)
(xo—xl)(xo—xz) (xl_xO)(xl_xz) (xZ_xO)(xz_xl) see ses wes wae

Similarly it can be shown that

— Yo Y1 Yn
[xo'xl' " xn] (xo=%1)..(x0—xn) + (x1=%0)-.(X1=Xn) + (xn-x0)(xn—xn-1) )

32

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.



T
LGS ) s

Hence the divided differences are symmetrical in their arguments.

Now let the arguments be equally spaced so that x; —xo = x, —x; = - =X, — X1 =
h. Then we obtain [x,, x,] = 222 = 2 Ay, ........ (5)
X1—Xp h
_ xaxol-[xox1]l _ 1 (Ay;  Ayo\ _ 1 o 1 .o
[x0, X1, X5] = B Zh( - - ) = thA Yo = hzZ!A Vo ceeenen (6)
and in general, [xg, x4, ..., x,] = : Ao el (7

h"n!
If the tabulated function is a polynomial of nth degree, then A"y, would be a constant
and hence the nth divided difference would also be a constant.
For the set of values (x;,y;),i = 0,1,2, ..., n, divided differences can be generated by the
following statements.
Definey (xj) =yj=DD (0,)),j=0,1,2, ..,n
Doi=1(1)n
Do j=0(1)(n-i)

DD(i—1,j+1)-DD(i—1,j)
X@+N-X\)

DD(i, ) =
Next j
Next i
2.5. Newton's General Interpolation Formula:

By definition, we have

Y=Yo
X—Xo

[x, xO] =

sothaty = yo + (x — xo)[x, x0] +.oveneon. (1
Again

[x,x0]—[x0.%1]

[x) xO) xl] = x—x1

which gives

[x, x0] = [x0, x1] + (x — x1)[x, %0, x4]

Substituting this value of [x, x,] in Equation (1), we obtain

Y=y + (x — x¢)[x0, x1] + (x — x0) (x — x) [, %0, X1] ....env. (2
But
_ [xxex1]=[x0,x1,%2]
[x, x0, %1, %2] = X,
and so [x, xq, x,] = [xg, X1, %21 + (x — x5)[x, X0, %1, %3] <ovevininin. (3)

Equation (2) now gives
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y =Yo + (x — x0) [x0, 1] + (x — x0) (x — x1) [x0, X1, x,]
+(x —xg)(x —x)(x — x)[x, %9, X1, X5] ooininiiill. 4)
Proceeding in this way, we obtain

y =yo + (x — x¢)[x0, x1] + (x — x0) (x — 1) [x0, X1, X5]
+(x — x0) (x — ) (x — x3) [x0, X1, X2, X3] + -+

+(x —x0) (x — x) (0 — x3) eee e (6 — 2D [X0) X1, X2, X3 eer e X)) e, (5)
This formula is called Newton's general interpolation formula with divided differences,
the last term being the remainder term after (n + 1) terms.

After generating the divided differences, interpolation can be carried out by the following
statements.

Let y; be required corresponding to the value x = x;,. Then

Yk = Yo

factor = 1.0

Do i=0(1) (n-1)

factor = factor * (x;, — x;)

Y, =Y, + factor * DD (i+1,0)

Next i

End

Example 1:

As our first example to illustrate the use of Newton's divided difference formula, we
consider the data of (Example 1 of section 2.3).

The divided difference table is

X logpx

300 24771 0.00145

304 2.4829 0.00140 0.00001

305 2.4843 0.00140 0

307 2.4871

Hence Equation (5) gives
log,0301 = 2.4771 + 0.00145 + (—3)(—0.00001) = 2.4786, as before .
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It is clear that the arithmetic in this method is much simpler when compared to that in
Lagrange's method.
Example 2:

Using the following table find f(x) as a polynomial in x.

x  fx)
-1 3
0o -6
339
6 822
7 1611

The divided difference table is

x  f(x)

0 -6 15 41 13

3 39 261 132

7 822 789

Hence Equation (5) gives

f)=3+x+D)+x(x+1D)(6)+x(x+1D(x—3)5)+x(x+1)(x—3)(x—16)
=x*—-3x3+5x2—-6

EXERCISES:
1. Prove that (a) A = ud + %2

(b) A%y, = Viys
2 .From the table of cubes given below, find (6.36)3 and (6.61)3.

x 6.1 6.2 6.3 6.4 6.5 6.6 6.7

x3 226981 238.328 250.047 262.144 274.625 287.496 300.763
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3. Define the operators A, V, 8, E and E~1 and show that
@A yk = Vypyr = 6Tyk+g
(b) AVy, = VAy, = 8%y

(©no =27

(d) 1 +p26% = (1 +§52)2
(e) A% = (1 + A)62
Ma()= -k

J’kJ’k+1.

4. Show that

(a2 =5(1+2)"

4

5.Find the missing terms in the following:

x 0 5 10 15 20 25 30

y 1 3 2?2 73 225 7 1153

6.Derive expressions for the errors in Newton's formulae of forward and backward
differences. Estimate the maximum error made in any value of sin x in Example 3.6
obtained by interpolation in the range 15° < x < 40°.

7. Certain values of x and f(x) are given below. Find f(1.235).

x 1.00 1.05 1.10 1.15 1.20 1.25

f(x) 0.682689 0.706282 0.728668 0.749856 0.769861 0.788700

8. Prove the following relations:
(@) 52E = A?

(b) E7/2=p—3

(c) V= 6E~1/?

(d) A — V= §2

(e) u = cosh %D.

9. Using Gauss's forward formula, find the value of f(32) given that f(25) =
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0.2707,£(30) = 0.3027, f(35) = 0.3386 and f(40) = 0.3794.
10. State Gauss's backward formula and use it to find the value of V12525, given that
V12500 = 111.8034,v12510 = 111.8481, V12520 = 111.8928,v/12530 =

111.9375 and V12540 = 111.9822.
11.State Stirling's formula for interpolation at the middle of a table of values and find

e11 from the following table:

x 1.7 1.8 1.9 2.0 2.1 2.2

eX 54739 6.0496 6.6859 7.3891 8.1662 9.0250

12. Using Stirling's formula, find cos(0.17), given that cos(0) = 1, cos(0.05) =
0.9988, cos(0.10) = 0.9950, cos(0.15) = 0.9888, cos(0.20) = 0.9801, cos(0.25)
0.9689, and cos(0.30) = 0.9553.

13. State Lagrange's interpolation formula and find a bound for the error in linear

interpolation.

14. Write an algorithm for Lagrange's formula. Find the polynomial which fits the
following data (—1,7), (1,5) and (2,15)

15.Find y(2) from the following data using Lagrange's formula

x 0 1 3 4 5

y 0 1 81 25 625

16. Let the values of the function y = sin x be tabulated at the abscissae 0,7 /4 and /2.
If the Lagrange polynomial L, (x) is fitted to this data, find a bound for the error in the
interpolated value.

17. Establish Newton's divided-difference interpolation formula and give an estimate of
the remainder term. Deduce Newton's forward and backward difference interpolation

formulae as particular cases.
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Unit 111

Numerical Differentiation and Integration: Derivatives using Newton’s forward difference
formula—Derivatives using Newton’s backward difference formula — Derivatives using central
difference formula — Maxima and Minima of the Interpolating polynomial-Numerical
Integration.

Chapter 3: Sections - 3.1 t0 3.5

3.1. Introduction:

In Chapter 3, we were concerned with the general problem of interpolation, viz., given the set
of values (x4, vo), (x1,¥1), ..., (xpn, ¥) Of x and y, to find a polynomial ¢(x) of the lowest
degree such that y(x) and ¢(x) agree at the set of tabulated points. In the present chapter, we
shall be concerned with the problems of numerical differentiation and integration. That is to
say, given the set of values of x and y, as above, we shall derive

formulae to compute:

. dy d%y
(0 dx’dx?’

(ii) fjon ydx.

.. for any value of x in [x,, x,,], and

3.2. Numerical Differentiation:

The general method for deriving the numerical differentiation formulae is to differentiate the
interpolating polynomial. We illustrate the derivation with Newton's forward difference
formula only, the method of derivation being the same with regard to the other formulae.

Consider Newton's forward difference formula:
-1 -1 -2
y=y0+uAy0+%A2yo +wﬁyo+m, ......... (D

Where x = xo+uh ............. (2)

2u-1
2

u?-6u+2

2 3
A%y + S

dy _dydu _ 1
Thendx_dudx_h(Ay0+

Byo + ) oo 3)
This formula can be used for computing the value of dy/dx for non-tabular values of x. For
tabular values of x, the formula takes a simpler form, for by setting x = x, we obtain u = 0

from Equation (2), and hence Equation (3) gives

ay -1 _1h2 1a3,, _1as

[dx]xsz = h(A)’o ~ A%y + S0y — A% + ) ............ 4)
Differentiating Equation (3) once again, we obtain

d’y _ 1 6u—6 12u%-36u+22

EZE(AZ)’O +TA3)’0 +TA4Y0+‘“) ............ %)
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from which we obtain [%]x_x = h—12 (AZyO — A3y, + %A‘*yo + ) ........... (6)
=40

Formulae for computing higher derivatives may be obtained by successive differentiation. In
a similar way, different formulae can be derived by starting with other interpolation formulae.
Thus,

(a) Newton's backward difference formula gives

2 =2 g2y, + 1viy 4o
[dx]x=xn _h(vyn+zv yn+3v yn+ ) ............. (7)
dzy 1 11 5
and [ﬁ xR (szn + Vi + SV + Vi + ) ............ (8)

(b) Stirling's formula gives

[d_y] _ l(Ay—1+Aye 183y +A%y 4 n 1 A5y 3+, + ) ____________ 9)
dxly=x, h 2 6 2 30 2

d?y 1 1 1
and I:@ N~ = E (Azy—l - EA4y_2 + %A6y_3 - "') .............. (10)

If a derivative is required near the end of a table, one of the following formulae may be used

to obtain better accuracy

h ’—(A e gtps dpe Tas Lpey ) 11
Yo = > 3 2 z c Yo (11)
1 1 1 1 1

— A2 _ A3 A4 __ A5 A6 __ ...
(A+2A 03 4 A — oS )y_l (12)

11 5 _ 137 7 363
hZ ”:(AZ_AS _A4-__A5 _A6__A7 _AS_...) 13
Yo t12 6% t180 102 360 Yo (13)

1 1 13 11 29

— AZ__A4- —AS— A6 A — AS ) . 14
( 122 Y129 " 180° T180° T5e0” T )Vt (14)
h '—(v+1v2+1v3+1v4+1v5+1v6+1v7+1v8+ ) 15
In = 2 3 4 5 6' 7" T8 Yn (15)

1 1 1 1 1 1 1
- v-—vZ——v3——v4——v5——v6——v7——v8—---) 16
( 2" 76 T 12 200 30 42 56 Yn+1 (16)
hzy;l’: (17)

11 5 137 7 363
_ (w2 3, i 2wsy 2oy i 228 .
(v FVS 4DV SV VOV 4 oV )yn (18)
1 1 13 11 29
_(vz_ ~v4_ ~ us_ 6 _ 7 _ 8 _ ...

(V 12" "12Y " 180" 180" 560" )y"“' (19

For more details, the reader is referred to Interpolation and Allied Tables. The following
examples illustrate the use of the formulae stated above.
Example 1:

From the following table of values of x and vy, obtain dy/dx and d?y/dx? forx = 1.2 :
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The difference table is

X y A A? 5 A4 AS A8
1.0 2.7183
0.6018
1.2 3.3201 0.1333
0.7351 0.0294
1.4 4.0552 0.1627 0.0067
0.8978 0.0361 0.0013
16 4.9530 0.1988 0.0080 0.0001
1.0966 0.0441 0.0014
1.8 6.0496 0.2429 0.0094
1.3395 0.0535
2.0 7.3891 0.2964
1.6359
95 9.0250

Here x, = 1.2,y, = 3.3201 and h = 0.2. Hence Equation (11) gives

[dy —1[07351 L 0.1627) + 2 (0.0361) — - (0.0080) + = (0.0014
dxlyo, 0217 2 (01627) +3(00361) = 7(0.0080) +£(0.0014)

= 3.3205
If we use formula (12), then we should use the differences diagonally downwards from

0.6018 and this gives

[dy _ 1 [06018+1 0.1333 ! 0.0294) + ! 0.0067 ! 0.0013
dxly—i, 020 7 (- )~ )+ @ )= 50 ]
= 3.3205, as before.

Similarly, formula (13) gives

d’y _ [01627 00361+11 0.0080 > 0.0014)| = 3.318
dz?|,_,, " 00al 0361+ 77 (0.0080) £ (0.0014)] = 3.

Using formula (14), we obtain
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d?y

—2 = [0 1333——(0 0067)+—(0 0013)| = 3.32
dx? 12 0.04

Example 2:

Calculate the first and second derivatives of the function tabulated in the preceding example at
the point x = 2.2 and also dy/dx at x = 2.0.

Solution:

We use the table of differences of Example 1. Here x,, = 2.2,y,, = 9.0250 and h = 0.2.

Hence formula (15) gives

4| = 1[16359+102964 +100535 +100094 +100014]
= 90228

d?y

— [0 2964+00535+ (0 0094) + = (0 0014)] = 8.992.

dx | ~0.04

To find dy/dx at x = 2.0, we can use either (6.15) or (6.16). Formula (6.15) gives
[dy] = 1][13395+102429 +100441 +100080)
dxl,.,o 02117 2(' )3(' )4(' )

whereas from formula (6.16), we obtain

dy 1 1 1 1 1
[5 no =02 [1.6359 3 (0.2964) — 3 (0.0535) — Ip (0.0094) — 20 (0.0014)]
= 7.3896
Example 3:

Find dy/dx and d?y/dx? at x = 1.6 for the tabulated function of Example 1.

Choosing x, = 1.6, formula (9) gives

dy 1 (0.8978 +1.0966 10.0361+ 0.0441 1 0.0013+0.0014
[dx oy E( 2 2 2 30 2 )
= 4.9530
Similarly, formula (10) yields
d?y
WLI T [0 1988 — —(0 0080) + 55 (0 0001)| = 4.9525

In the preceding examples, the tabulated function is e* and hence it is easy to see that the error
is considerably more in the case of the second derivatives. This is due to the reason that
although the tabulated function and its approximating polynomial would agree at the set of data

points, their slopes at these points may vary considerably. Numerical differentiation, is,
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be used only in 'rare cases.' The next section

therefore, an unsatisfactory process and shou

will be devoted to a discussion of errors in the numerical differentiation formulae.

3.2.1 Errors in Numerical Differentiation

The numerical computation of derivatives involves two types of errors, viz. truncation errors
and rounding errors. These are discussed below.

The truncation error is caused by replacing the tabulated function by means of an interpolating
polynomial. This error can usually be estimated by formula (7). As noted earlier, this formula
is of theoretical interest only, since, in practical computations, we usually do not have any
information about the derivative y(™*1(&). However, the truncation error in any numerical
differentiation formula can easily be estimated in the following manner. Suppose that the
tabulated function is such that its differences of a certain order are small and that the tabulated
function is well approximated by the polynomial. (This means that the tabulated function does
not have any rapidly varying components.) We know that 2¢ is the total absolute error in the
values of Ay;, 4¢ in the values of A%y;, etc., where ¢ is the absolute error in the values of y;.

Consider now, for example, Stirling's formula (9). This can be written in the form

[d—y =M+T1=%+T1, ............ (19)

dxly=yx, 2h

where T;, the truncation error, is given by

_ 1|8y +8%y
Ty =— |72 (20)
2
Similarly, formula (10) can be written as [%] = h—leZy_l + Ty e, (21)
X=Xo
1
Where T, = — |A*y_o| (22)

The rounding error, on the other hand, is inversely proportional to h in the case of first
derivatives, inversely proportional to h? in the case of second

derivatives, and so on. Thus, rounding error increases as h decreases. Considering again
Stirling's formula in the form of Equation (19), the rounding error does not exceed 2¢/2h =

£/h, where ¢ is the maximum error in the value of y;. On the other hand, the formula

[dy Ay +Ay, Ny, + Ny, N
dxlycy, 2h 12h

has the maximum rounding error

18¢ _ 3¢

12h  2h
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Finally, the formula [%] =8 LS TBe L (24)

x2lx=x, h2 h2
has the maximum rounding error 4¢/h2. It is clear that in the case of higher derivatives, the
rounding error increases rather rapidly.
Example 4:
Assuming that the function values given in the table of Example 1 are correct to the accuracy
given, estimate the errors in the values of dy/dx and d?y/dx? at x = 1.6.
Since the values are correct to 4D, it follows that £ < 0.00005 = 0.5 x 1074,
Value of dy/dx atx = 1.6 :

1

Truncation error = —
6h

Ny_1 + Ny,
2

_ 1 0.0361+ 0.0441

~6(0.2) 2

= 0.03342

, from equation (20)

and

3¢ om (23
o rom(23)

_3(0.5)107*
N 0.4
= 0.00038

Rounding error =

Hence,

Total error = 0.03342 + 0.00038 = 0.0338

Using Stirling's formula from Equation (19), with the first differences, we obtain

(dy) _Ay_; +Ay, 08978+ 1.0966 19944
x=1.6

dx 2h 0.4 = o4 +9860.

The exact value is 4.9530 so that the error in the above solution is (4.9860 4.9530),
i.e., 0.0330, which agrees with the total error obtained above.

Value of d?y/dx? atx = 1.6 :

Using Equation (24), we obtain

d? A%y_.  0.1988
[ yl ol e = 4.9700
x=1.6

dx? Rz~ 0.04
so that the error = 4.9700 — 4.9530 = 0.0170.
Also,

x 0.0080 = 0.01667

Truncation error =

4 _ —
12r2 22 = 3009
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and
4 4x05x107*

Rounding error = = 0.04 = 0.0050

Hence

Total error in [£2] = 0.0167 +0.0050 = 0.0217,
xX=1.

3.2.2. Cubic Spline Method:

The following examples illustrate the use of the spline formulae in numerical differentiation.
Example 5:

We consider the function y(x) = sinx in [0, ].

Here My = My =0.Let N = 2,i.e., h=m/2. Then

Vo=Y,=0,y,=1 and My =M, = 0.

Using formulae, we obtain

6
My + 4M; + M, =ﬁ(}’o_23’1 +¥,)

or
12
Ml = _F

Formula now gives the spline in each interval. Thus, in 0 < x < /2, we obtain
_2(=2x® N 3x
s() = T\ T? 2

which gives s'(x) = %[—% (3x2) + ;] ........... (1)

Hence

( )—2 6 3) 22 _ 071619725

S\ T\ Tr16" 2) T T

Exact value of s'(r/4) = cosm/4 = 1/v/2 = 0.70710681. The percentage error in the

computed value of s'(rr/4) is 1.28%. From (i),

" 24
s"(x) = — 53X

and hence
T 24T 6
s (—) = = 060792710

4 34 72
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Since the exact value is —1/+/2, the percentage error in this result is 14.03%. We now
consider values of y = sin x in intervals of 10° from x = 0 to . To obtain the spline second

derivatives we used a computer and the results are given in the following table (up to x = 90°

).

y"'(x)
x (in degrees) Exact Cubic spline
10 -0.173648178 -0.174089426
20 -0.342020143 -0.342889233
30 -0.500000000 -0.501270524
40 -0.642787610 -0.644420964
50 -0.766044443 -0.767990999
60 -0.866025404 -0.868226016
70 -0.939692621 -0.942080425
80 -0.984807753 -0.987310197
90 -1.000000000 -1.002541048

It is seen that there is greater inaccuracy in the values of the spline second derivatives.
Example 6:
From the following data for y(x), find y'(1.0).

X 2 -1 2 3
y(x) -12 -8 3 5
The function from which the above data was calculated is given by y = — 11—5x3 — ;’—Oxz +

%x — 3.9. Hence, the exact value of y'(1) is 3.51667.

To apply the cubic spline formula (5.31), we observe that h, = 1, h, = 3 and h; = 1.
For i = 1,2, the recurrence relation gives:

8M, + 3M, = —2

and

3M, + 8M, = —10

since M, = M3 = 0. We obtain M, = gand M, = —%. In—1 < x < 2, we have
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2—x)? 14 (x+1)7, 78]
6 551 6 (__>l

1
5:(0) =3 [—

1 g 21 5 1 3 9, 74 1
+3[_ _55]( _x)+3[ _6(_55>]("+ )
Differentiating the above and putting x = 1, we obtain

1 7 148 461 276

Y50 =31"5"55 T 55 T 55

= 3.52727, on simplification.

3.2.3 Differentiation Formulae with Function Values

In Section 3.2, we developed forward, backward and central difference approximations of
derivatives in terms of finite differences. From the computational point of view, it would be
convenient to express the numerical differentiation formulae in terms of function values. We
list below some differentiation formulae for wuse in numerical computations.

(i) Forward Differences

=y —Viro + 4y, . — 3V
y,(xl) — yl+1h yl; y,(xl) — :Vl+2 2%14‘1 yl + O(hz)
; Vi 21t Y2, _ Vi+z T 4YVir2 — Vi1 + 2y
(i) Backward Differences
, Yi = Yi-1 , 3y —4Yi-1 + Vi
y(x) = =7 y'(r) = H =L,
. _Yi—2Yi 1t Yo . 2y =5Yi-1 +4Yi 2 — Vi3

(i) Central Differences

"(x,) = Yivr 7 Vi-1, '(x,) = —Yirz t 8Yir1 —8Yi1 t Via
y l Zh ) y i 12h ;
7 _yi—l_zyi+yi+1_
y (xl) - hz )
" _ Vit2 +16yi41 —30y; + 16y, 1 — ¥;»
y"'(x;) = 122

These formulae can be derived by using Taylor series expansion of the functions.
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3.3. Maximum and Minimum Values of a Tabulated Function:

It is known that the maximum and minimum values of a function can be found by equating the
first derivative to zero and solving for the variable. The same procedure can be applied to
determine the maxima and minima of a tabulated function.

Consider Newton's forward difference formula

p(p—1)
2

p(p—1D(p - 2)A3

AZ
Yo + 6

Y =Yo + pAy, + Yo + -

Differentiating this with respect to p, we obtain

d_y_ Zp—l 2
dp—Ay0+—2 A%y, +

3p%-3p+2

LAY (1)

For maxima or minima dy/dp = 0. Hence, terminating the right-hand side, for simplicity,

after the third difference and equating it to zero, we obtain the quadratic for p
Cotcp+cep?=0........ (2)

where
1 1
Co = Ayo — EAZYO + gAs}’o\
and ¢; = A%y, — A3y, b e (3)
1
C; = 5A33’0 )

Values of x can then be found from the relation x = x, + ph.
Example 1:

From the following table, find x, correct to two decimal places, for which y is maximum and

find this value of y.

x y
1.2 0.9320
1.3 0.9636

1.4 0.9855
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The table of differences is

X ¥ A A2

12 0.9320
0.0316

13 0.9636 _0.0097
0.0219

14 0 9855 —0.0099
0.0120

15 0.9975 —0.0099
0.0021

16 0.9996

Let x, = 1.2. Then formula (1), terminated after second differences, gives

2p—1

0 =0.0316
* 2

(—0.0097)

from which we obtain p = 3.8. Hence
x = x, + ph = 1.2 + (3.8)(0.1) = 1.58.
For this value of x, Newton's backward difference formula at x,, = 1.6 gives

—0.2(—0.2 + 1)

y(1.58) = 0.9996 — 0.2(0.0021) + 5

= 0.9996 — 0.0004 + 0.0008
=1.0

(—0.0099)

3.4.Numerical Integration:

The general problem of numerical integration may be stated as follows. Given a set of data
points (xq, Vo), (x1,¥1), ..., (xn, ¥) Of a function y = f(x), where f(x) is not known

explicitly, it is required to compute the value of the definite integral

48

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.



s M
b B e

As in the case of numerical differentiation, oHIe replaces f(x) by an interpolating polynomial
¢ (x) and obtains, on integration, an approximate value of the definite integral. Thus, different
integration formulae can be obtained depending upon the type of the interpolation formula
used. We derive in this section a general formula for numerical integration using Newton's

forward difference formula.
Let the interval [a, b] be divided into n equal subintervals such that

a=xy<x <x, <--x,=b.Clearly, x,, = x, + nh. Hence the integral becomes

Xn
I =j ydx
Xo

Approximating y by Newton's forward difference formula, we obtain

-1 —1D(p-2
p(pz )Azy0 p(p g(p )A3

Xn
1=f [yo+pAyo+ yo+---]dx
X0

Since x = xy + ph, dx = hdp and hence the above integral becomes

n
p(p—-1) plp -1 -2)
I=hf [yo + pAy, +TA2y0+ 5 A3yo+---]dp
0
which gives on simplification
n 2n-3 -2)2
f;; ydx = nh [yo +%Ay0+n( 1712 ) A2y, +%A3yo +] .......... (2)

From this general formula, we can obtain different integration formulae by putting n =
1,2,3, ..., etc. We derive here a few of these formulae but it should be remarked that the
trapezoidal and Simpson's 1/3-rules are found to give sufficient accuracy for use in practical

problems.

3.4.1.Trapezoidal Rule:

Setting n = 1 in the general formula (2), all differences higher than the first will become zero

and we obtain

h
[ ydx = h(yo +3450) = h[yo +3 01— y0)| =5 o + 31). -...3)
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and so on. For the last interval [x,,_;, x,,], we have

n h
ffn_l yadx =2 n-1+Yn) oo (5)

Combining all these expressions, we obtain the rule

n h
[ ydx =21yo + 200 + Y2 4+ Yuo1) ] oo 6)

which is known as the trapezoidal rule.
The geometrical significance of this rule is that the curve y = f(x) is replaced by n straight

lines joining the points (xo, yo) and (x, y1); (x1,y1) and (x5, ¥2), ..., (Xp—1, Yn—1) and
(%, V). The area bounded by the curve y = f(x), the ordinates x = x, and x = x,,, and the

x-axis is then approximately equivalent to the sum of the areas of the n trapeziums obtained.

The error of the trapezoidal formula can be obtained in the following way. Let y = f(x) be
continuous, well-behaved, and possess continuous derivatives in [x,, x,,]. Expanding y in a

Taylor's series around x = x,, we obtain

X1 X1 (x —x )2
f ydx=f Iyo +(x—xo)yé+T°y6'+-" dx
0 X0

X
h'z ! h'3 n
:hy() +?y0 +?y0 +‘”.... ........... (7)

Similarly,

h h ! hz n h3 nr

E(J’o +y1) =50+ + hy, to vty o
hz ! h3 nr

= hyo +?y0 +Ty0 + f Y it deescessessens (8)

From Equations. (4) and (5), we obtain

[k ydx =2y +y1) = == h3yy 4+ 9)
0 2 12
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in the remaining subintervals, viz., [x4, x5], [x, x3], ... and [x,,_;, x,,]. We thus have E =

R Y A ) (10)

where E is the total error. Assuming that y"' () is the largest value of the n quantities on the
right-hand side of Equation (10), we obtain

__i3 H—__b__aZH—
E = 12h ny”(x) = > hey"(x) ........... (11)

sincenh =b —a.

3.4.2. Simpson's 1/3-Rule:

This rule is obtained by putting n = 2 in Equation (2), i.e. by replacing the curve by n/2 arcs
of second-degree polynomials or parabolas. We have then

xz 1 h
j ydx = 2h (yo + Ay, + gAZyO> =300 +4y1 +72).
X0

Similarly,

JC4 h
f ydx = g(yz + 4y3 + ¥4)
X2

and finally

Xn h
f ydx = 3 (Vn-2 +4yn_1 + yn)
Xp—

2

Summing up, we obtain

n h
[ ydx =2lyo + 4Qn + y3 + Y5 + -+ Y1) + 20 + Vs + Yo + -+ Yna) + Yl

which is known as Simpson's 1/3-rule, or simply Simpson's rule. It should be noted that this

rule requires the division of the whole range into an even number of subintervals of width h.
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Following the method outlined in Section 3.4.1, it can be shown that the error in Simpson's

rule is given by
b h
L ydx =2lyo+ 41+ ys +ys+ -t yn1)
+2(y2 + Y2 + Y6+ + Yn-2) + ¥nl
= 2Rty (®) (13)
where y'v (x) is the largest value of the fourth derivatives.

3.4.3 Simpson's 3/8-Rule

Setting n = 3 in Equation (2), we observe that all the differences higher than the third will

become zero and we obtain

*3 3 3 1
f ydx = 3h (yo + =Ay, + =A%y, + —A3yo>
e 2 4 8

3 3 1
= 3h[)’0 +§(}’1—Yo)+z()’2—2)’1+Y0)+§(Y3—3)’2+3)’1—}’0)

3h
= 3(}’0 +3y1 + 3y, +¥3)
Similarly
%6 3h
f ydx = ?(}’3 + 3y, + 3Ys + Ye)
X3
and so on. Summing up all these, we obtain

Xn 3h
f ydx = ) [(Vo + 3y1 + 3y, +¥3) + (¥3 + 3y, + 3ys + ye) + -
Xo
+ (Vn—3 + 3Vn—2 + 3Vn_1 + )

3h
=3 Vo +3y1 + 3y, + 2y3 +3y5 +3ys + 2ys + . +2Yn_3 + 3¥n_2 + 3¥n_1 + ¥n)
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S0 accurate as Simpson's rule, the dominant term

in the error of this formula being —(3/80)h>y™V (%).

This rule, called Simpson's (3/8)-rule, is not

3.4.4. Boole's and Weddle's Rules:
If we wish to retain differences up to those of the fourth order, we should integrate between
X, and x, and obtain Boole's formula

h
Lg*ydx==§§(7y0+-32y1+-12y2+-32y3+-7ya ............. (15)

The leading term in the error of this formula can be shown to be
7

__ ,VvirE
945’ €3]

If, on the other hand, we integrate between x, and x retaining differences up to those of the
sixth order, we obtain Weddle's rule

3h
[or ydx =2 (o + 5y + Y2 + 6Y3 +¥a +5Y5 +Y6) oo (16)

the error in which is given by —(h7/140)y"!(%).
These two formulae can also be generalized as in the previous cases. It should, however, be
noted that the number of strips will have to be a multiple of four in the case of Boole's rule

and a multiple of six for Weddle's rule.

3.4.5. Use of Cubic Splines:

If s(x) is the cubic spline in the interval (x;_,, x;), then we have

Xn
sz ydx =

Xo
n n Xi
= f f s(x)dx
1 “Xi-1 “Xi-1
1

i=

e (G = Moy + G = 3P M)

1 h 1 h?
+E(xi_x) Yi-1 = & Mi—a +E(x_xi—1) Yi— g Mi|dx

On carrying out the integration and simplifying, we obtain
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- .
I'= 2z [; Yica +y) —5; (M + Ml-)] .......... (17)

where M;, the spline second-derivatives, are calculated from the recurrence relation
6 .
Mi—l + 4Ml + Mi+1 = ﬁ (yi—l - Zyl + yi+1),l - 1,2, ...,Tl - 1

3.4.6. Romberg Integration:

This method can often be used to improve the approximate results obtained by the finite-
difference methods. Its application to the numerical evaluation of definite integrals, for
example in the use of trapezoidal rule, can be described, as follows. We consider the definite

integral

b
I=fydx
a

and evaluate it by the trapezoidal rule equation (6) with two different subintervals of widths
h, and h, to obtain the approximate values I; and I,, respectively. Then Eqg. (6.38) gives the

errors E; and E, as
Ey=—=(b-a)hy"(®) ..o (18)
and B, = ——(b— a)h3y" @) ...co.oon... (19)

Since the term y”’ (%) in Eq. (6.46) is also the largest value of y”'(x), it is reasonable to

assume that the quantities y"’ (x) and y"’' (x) are very nearly the same. We therefore have

E, _ R
E, h?

and hence

E, 3
EZ_El_h%_h%

2
Since E, — E; = I, — I, this gives E, = ﬁ (I, —1) .oonene. (20)
27"
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which, in general, would be closer to the actual value-provided that the errors decrease
monotonically and are of the same sign.

If we now set

1 1
h2 =Eh1 =Eh

Equation (6.48) can be written in the more convenient form

I(nin) =2 (Gr)—1m)] (22)

where I(h) = I,

1 1
I(Eh) = 12 and I(h,ih) = 13.

With this notation the following table can be formed

1)

I 1h ! h.lh.ih‘lh
2 2 4 8

The computations can be stopped when two successive values are sufficiently close to each
other. This method, due to L.F. Richardson, is called the deferred approach to the limit and

the systematic tabulation of this is called Romberg Integration.

3.4.7 Newton-Cotes Integration Formulae:

Let the interpolation points, x;, be equally spaced,
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le.letx; = x, +ih,i =0,1,2,...,n, and let the end points of the interval of integration be
placed such that

b—a
Xog=a.X, =b,h= —
Then the definite integral I = [ ydx ............ (23)
is evaluated by an integration formula of the type I,, = X1y Ciyi  «vvevvene... (24)

where the coefficients C; are determined completely by the abscissae x;. Integration formulae
of the type (24) are called Newton-Cotes closed integration formulae. They are ‘closed’ since
the end points a and b are the extreme abscissae in the formulae. It is easily seen that the
integration formulae derived in Equations. (21)-(24) are the simplest Newton-Cotes closed

formulae.

On the other hand, formulae which do not employ the end points are called Newton-Cotes,

open integration formulae. We give below the five simplest Newton-Cotes open integration

formulae

(a) f;;z ydx = 2hy, + %3}/”(3?), (g <X <X3)  cevrnennn (25)

(b) f: ydx = % 1 +y2) + 3%3)/”(9?), (g <X <X3) cevnnnnnn. (26)

(©) [ ydx =2 2y, =y, + 2y3) + 2R5Y™ (), (X0 < F < x4) woooeee 27)

(d) f;cos ydx = % 11y, +y, +y3 + 11y,) + %h%fiV (%), (xg <X < x5) ........(28)
(&) [° ydx = 2 (11y; — 14y, + 26y, — 14y, + 11y5) + = A7y (D), ........ (29)
(xg < X < x¢)

A convenient method for determining the coefficients in the Newton-Cotes formulae is the

method of undetermined coefficients.
Example 1:

Find, from the following table, the area bounded by the curve and the x-axis from
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x=747tox =7.52

x f) x fx)
747 193 750 201
748 195 751 203

7.49 1.98 7.52 2.06

We know that

7.52
Area = f(x)dx

7.47

with h = 0.01, the trapezoidal rule given in Equation(6) of 3.4.1 gives

0.01
Area = — [1.93 +2(1.95+ 1.98 + 2.01 + 2.03) + 2.06] = 0.0996.

Example 2:
A solid of revolution is formed by rotating about the x-axis the area between the x-axis, the

lines x = 0 and x = 1, and a curve through the points with the following coordinates:

x y
0.00 1.0000
0.25 0.9896
0.50 0.9589
0.75 0.9089
1.00 0.8415

Estimate the volume of the solid formed, giving the answer to three decimal places.

If VV is the volume of the solid formed, then we know that
1
V=m f y2dx
0
Hence we need the values of y2 and these are tabulated below, correct to four decimal places

2

x y
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0.50 0.9195
0.75 0.8261
1.00 0.7081

With h = 0.25, Simpson’'s rule gives
0.25
[ _m(025)

[1.0000 + 4(0.9793 4+ 0.8261) + 2(0.9195) + 0.7081]
= 2.8192
Example 3:

Evaluate | = [ —dx

correct to three decimal places.
We solve this example by both the trapezoidal and Simpson's rules with h = 0.5,0.25 and
0.125 respectively.

() h = 0.5 : The values of x and y are tabulated below:

x y

0.0 1.0000
05 0.6667
1.0 0.5000

(a) Trapezoidal rule gives

[1.0000 + 2(0.6667) + 0.5] = 0.70835

AN

| =
(b) Simpson's rule gives
1
I'==[1.0000 + 4(0.6667) + 0.5] = 0.6945

(i) h = 0.25 : The tabulated values of x and y are given below:

x y
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0.50 0.6667
0.75 0.5714
1.00 0.5000

(a) Trapezoidal rule gives
I = %[1.0 + 2(0.8000 + 0.6667 + 0.5714) + 0.5] = 0.6970.
(b) Simpson's rule gives
[ [1.0 + 4(0.8000 + 0.5714) + 2(0.6667) + 0.5] = 0.6932

12
(iii) Finally, we take h = 0.125 : The tabulated values of x and y are

X y x y

0 1.0 0.625 0.6154

0.125 0.8889 0.750 0.5714

0.250 0.8000 0.875 0.5333

0.375 0.7273 1.0 0.5

0.5 0.6667

(a) Trapezoidal rule gives

1
I =16 [1.0 + 2(0.8889 + 0.8000 + 0.7273 + 0.6667)
+0.6154 + 0.5714 + 0.5333) + 0.5]
=0.6941

(b) Simpson's rule gives
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1
I'=57110 +4(0.8889 + 0.7273 + 0.6154 + 0.5333)
+2(0.8000 + 0.6667 + 0.5714) + 0.5]

=0.6932

Hence the value of I may be taken to be equal to 0.693 , correct to three decimal places. The
exact value of I is log, 2, which is equal to 0.693147 .... This example demonstrates that, in
general, Simpson's rule yields more accurate results than the trapezoidal rule.

Example 4:
Use Romberg's method to compute I = f01 ﬁdx

correct to three decimal places.
We take h = 0.5,0.25 and 0.125 successively and use the results obtained in the previous

example. We therefore have

1 1
I(h) = 0.7084,1 (E h) = 0.6970, and I (Zh) = 0.6941

Hence, using Eq. (6.49), we obtain

1 1
I(h,ih> = 0.6970 + 3 (0.6970 — 0.7084) = 0.6932.

1 1 1
I(E h'Zh> = 0.6941 + 5(0.6941 —0.6970) = 0.6931
Finally,

1 1 1
’(h'ih'2h> = 0.6931 + 5(0.6931 —0.6932) = 0.6931
The table of values is, therefore,

0.7084
0.6932

0.6970 0.6931
0.6931

0.6941

An obvious advantage of this method is that the accuracy of the computed value is known at
each step.
Example 5:

Apply trapezoidal and Simpson's rules to the integral

1
sz V1 —x2dx
0
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Using 10,20,30,40 and 50 subintervals successively, an electronic computer, with a nine
decimal precision, produced the results given in Table below. The true value of the integral is
m/4 = 0.785398163.

No. of subintervals  Trapezoidal rule ~ Simpson's rule

10 0.776129582 0.781752040
20 0.782116220 0.784111766
30 0.783610789 0.784698434
40 0.784236934 0.784943838
50 0.784567128 0.785073144

Example 6:
Evaluate I = fol sin Txdx
using the cubic spline method.

The exact value of I is 2/ = 0.63661978. To make the calculations easier, we take n = 2,

i.e. h = 0.5. In this case, the table of values of x and y = sinpx is

x oy
0 o0
05 1.0
1.0 00

with M, = M, = 0, we obtain M; = —12. Then formula equation (17) of 3.4.5 gives

1 1 1 1
I:Z()’o+)’1)_@(M0+M1)+Z(Y1+YZ)_@(M1+M2)
_1+ 1 +1+ 1
4 16 4 16
_5
8
= 0.62500000
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which shows that the absolute error in the natural spline solution is 0.01161978 . It is easily

verified that the Simpson's rule gives a value with an absolute error 0.03004689 , which is
more than the error in the spline solution.
Example 7:
Derive Simpson's 1/3-rule using the method of undetermined coefficients.
We assume the formula
h

f_h ydx =a_1y_1 + agyo + a1 )1 )
where the coefficients a_;, a, and a, have to be determined. For this, we assume that
formula (i) is exact when y(x) is 1, x or x2. Putting, therefore, y(x) = 1, x and x?

successively in (i), we obtain the relations

and
h
a_i+ayt+a; = j dx = 2h, (i)
-h
h
—a_,+a = f xdx =0 (iii)
-h
2
a_,+a, = §h (iv)
Solving (ii), (iii) and (iv) for a_;, a, and a,, we obtain
2 4h
a_, =§=a1 and a =3
Exercises:

1.Find %]0 (x) at x=0.1 from the following table:

(0, 1.0) ,(0.1,0.9975), (0.2, 0.9900), (0.3, 0.9776), (0.4,0.9604).

2. Tabulate the function y = f(x) = x> —10x + 6 atx, = —0.5,x; = 1.00 and x, = 2.0.
Compute its first and second derivatives at x=1.00 using Lagrange’s interpolation formula.
Compare your results with true values.

3. From the following values of x and y, find % at x=2 using the cubic spine method.

(2,11) (3,49) (4,123)

4. Evaluate (a) fonx sinx dx (b)f_z2 5:2x dx
using the trapezoidal rule with five ordinates.

. . 0) 1 - —_ - —_ 7 2
5. Using Simpson’s 3 rule with h=1, evaluate the integral I—f3 x“logx dx.
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Unit IV

Numerical Solutions of Ordinary Differential Equations: Taylor’s Series Method — Picard’s
method — Euler’s method — Runge - Kutta method.

Chapter 4: Sections - 4.1to 4.4

4.1 Introduction:

Many problems in science and engineering can be reduced to the problem of solving
differential equations satisfying certain given conditions. The analytical methods of solution,
with which the reader is assumed to be familiar, can be applied to solve only a selected class
of differential equations. Those equations which govern physical systems do not possess, in
general closed form solutions, and hence recourse must be made to numerical methods for
solving such differential equations.

To describe various numerical methods for the solution of ordinary differential equations, we
consider the general first order differential equation Z—i’ =f(,y) i (D

with the initial condition, y(x,) = yy .......... )

and illustrate the theory with respect to this equation. The methods so developed can, in
general, be applied to the solution of systems of first-order equations, and will yield the
solution in one of the two forms:

(i) A series for y in terms of powers of x, from which the value of y can be obtained by direct
substitution.

(i) A set of tabulated values of x and y.

The methods of Taylor and Picard belong to class (i), whereas those of Euler, Runge-Kutta,
Adams-Bashforth, etc., belong to class (ii). These latter methods are called step-by-step
methods or marching methods because the values of y are computed by short steps ahead for
equal intervals h of the independent variable. In the methods of Euler and Runge-Kutta, the
interval length h should be kept small and hence these methods can be applied for tabulating y
over a limited range only. If, however, the function values are desired over a wider range, the
methods due to Adams-Bashforth, AdamsMoulton, Milne, etc., may be used. These methods
use finite-differences and require 'starting values' which are usually obtained by Taylor's series

or Runge-Kutta methods.
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It is well-known that a differential equation o tﬁ:e nth order will have n arbitrary constants in
its general solution. In order to compute the numerical solution of such an equation, we
therefore need n conditions. Problems in which all the initial conditions are specified at the
initial point only are called initial value problems. For example, the problem defined by Eqgs.
(1) is an initial value problem. On the other hand, in problems involving second-and higher-
order differential equations, we may prescribe the conditions at two or more points. Such
problems are called boundary value problems.

We shall first describe methods for solving initial value problems of the type (8.1), and at the
end of the chapter we will outline methods for solving boundary value problems for second-

order differential equations.

4.2 Solution by Taylor's Series:

We consider the differential equation y' = f(x,y) .......... (1)

with the initial condition y(x,) = yy .......... )

If y(x) is the exact solution of Eq. (1), then the Taylor's series for y(x) around x = x, is
_ 2

given by y(x) = yo + (x — x0)yg + (x=xo) Yo+ o 3)

2!
If the values of yg, v, ... are known, then Equation (3) gives a power series for y. Using the
formula for total derivatives, we can write
y'=f' = f 4V = hH
where the suffixes denote partial derivatives with respect to the variable concerned. Similarly,
we obtain
V" = f" = fox + foyf + f(fx + finf) + (e + £f)

= fox + 2f foy + [2fyy + by + F 1
and other higher derivatives of y. The method can easily be extended to simultaneous and
higher-order differential equations.
Example 1:
From the Taylor series for y(x), find y(0.1) correct to four decimal places if y(x) satisfies
y'=x—vy% and y(0) =1
The Taylor series for y(x) is given by

x2 x3 x* x5
_ / " " iv \4
J’(x)—1+xyo+23’o+6 0 +24YO +1203’0+

The derivatives yg, y4', ... etc. are obtained thus:
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y'(x) =x—y? Yo =—1

y'(x)=1-2yy' Yo =3
yul(x) — _Zyy” _ 2y12 yén = —8
Y ) = —2yy" = 6y'y" Yo' =34

I, \A

yY(x) = —2yy" —8y'y" —6y"?* yJ =-186
Using these values, the Taylor series becomes
3 4 17 31
-1 _ 2 _ - 33" .4 7.5, ...
y(x)=1 x+2x 37X +12x 0% +
To obtain the value of y(0.1) correct to four decimal places, it is found that the terms up to

x* should be considered, and we have y(0.1) = 0.9138.

"2

Suppose that we wish to find the range of values of x for which the above series, truncated
after the term containing x*, can be used to compute the values of y correct to four decimal

places. We need only to write

31
2—0x5 < 0.00005 or x < 0.126

Example 2:

Given the differential equation y"" —xy' —y =0

with the conditions y(0) = 1 and y’(0) = 0, use Taylor's series method to determine the
value of y(0.1).

We have y(x) = 1 and y'(x) = 0 when x = 0. The given differential equation is

y'(x) =xy'(x) +y(x) (@)
Hence y” (0) = y(0) = 1. Successive differentiation of (i) gives
y"(x) =xy"(x) +y'(x) +y'(x) = xy"(x) + 2y' (%), (i0)
YV () = xy" () +y"(x) + 2y" (x) = xy"" (%) + 3y" (%), (i)
YY) = xy" (x) + y"(x) +3y"" (x) = xy™ (x) +4y" (%), (iv)
YU () = xyY(x) + ¥V (x) + 4y™ (x) = xyV (%) + 5y (%), ()

and similarly for higher derivatives. Putting x = 0 in (ii) to (v), we obtain

y"'(0) = 2y'(0) = 0,y™(0) = 3y"(0) = 3,y¥(0) = 0,y*'(0) = 5.
By Taylor's series, we have

x2 x3 x4
y(x) =y(0) +xy'(0) + 73}”(0) + gY”’(O) + ﬁy” (0)
5 6

X X .
AV —yVi

Hence
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— (01)2 (01)4 (0.1)6"?:.;_.“, =
YO =1+——+—=0) +—5-(5) +

=1+ 0.005 + 0.0000125, neglecting the last term
= 1.0050125, correct to seven decimal places.

4.3 Picard's Method of Successive Approximations
Integrating the differential equation y = y, + f;} floy)dx ... (1)

Equation (1), in which the unknown function y appears under the integral sign, is called an
integral equation. Such an equation can be solved by the method of successive
approximations in which the first approximation to y is obtained by putting y, for y on right
side of Equation (1), and we write
y®M =y, + fxf(x, Yo)dx
X
The integral on the right can now be solved and the resulting y™ is substituted for y in the
integrand of Eq. (1) to obtain the second approximation y® :
y® =y, + fxf(x,y“))dx
X
Proceeding in this way, we obtain y®),y®, .. y®=1D and (™ where
y™ =y, + fx flx, y®D)dx withy© =y, ... (2)
Xo
Hence this method yields a sequence of approximations y™,y®@), ...,y and it can be
proved (see, for example, the book by Levy and Baggot) that if the function f(x,y) is
bounded in some region about the point (x,,y,) and if f(x, y) satisfies the Lipschitz
condition, viz.,
|f(x,y) — f(x,y)|] < K|y — y|K being a constant ........(3)
then the sequence y™, y(), ... converges to the solution of Eq. (1) of 4.2.
Example 1:
Solve the equation y’ = x + y?, subject to the condition y = 1 when x = 0.

We start with y(® = 1 and obtain

X
1
y(1)=1+f (x+1)dx=1+x+zx2
0

Then the second approximation is

66

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.



X

0

2

1 2
x+(1+x+—x2> ldx
= 1+x+%x2 +§x3 +%x4+210x5
It is obvious that the integrations might become more and more difficult as we proceed to
higher approximations.
Example 2:

x2

y2+1

Given the differential equation Z—i’ =

with the initial condition y = 0 when x = 0, use Picard's method to obtain y for x = 0.25,0.5
and 1.0 correct to three decimal places.
We have

X xZ
y=f0 y2+1dx

Setting y(©® = 0, we obtain

* 1
y® = f x%dx = =x3

0 3
and

1 1 1
) _ -1 3\ _ 3 9, ...
y dx = tan (3x>—3x 81x +

X XZ
B -fo (1/9x° +1
so that y™ and y(® agree to the first term, viz., ( 1/3)x3. To find the range of values of x so
that the series with the term (1/3)x3 alone will give the result correct to three decimal

places, we put
ix9 < 0.0005
81

which yields

x <07

Hence
y(0.25) = %(0.25)3 = 0.005
y(0.5) = %(0.5)3 = 0.042
y(1.0) = 11 o3
3 1
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4.4 Euler's Method:

We have so far discussed the methods which yield the solution of a differential equation in
the form of a power series. We will now describe the methods which give the solution in the
form of a set of tabulated values.

Suppose that we wish to solve the Equations. (1) of 4.2 for values of y at x = x,, = xo +
rh(r = 1,2,...). Integrating Eq. (1) of 4.2, we obtain

Vi =9y + f;;l FOodx oo (1)
Assuming that f(x,y) = f(xq,¥o) In xy < x < x4, this gives Euler's formula
Y1 = Vo + hf (X0, ¥0): e ve oo (1)

Similarly for the range x; < x < x,, we have
X2

o=t [ i
X1

Substituting f (x4, y,) for f(x,y) inx; < x < x, we obtain
Yo, = Y1 + hf(xl,yl). vee e (1b)

Proceeding in this way, we obtain the general formula

VYne1 =Vn + Af O, ), n =012, ... ........(2)
The process is very slow and to obtain reasonable accuracy with Euler's method, we need to
take a smaller value for h. Because of this restriction
on h, the method is unsuitable for practical use and a modification of it, known as the
modified Euler method, which gives more accurate results, will be described in Section 3.4.2.
Example 1:
To illustrate Euler's method, we consider the differential equation y' = —y with the condition
y(0) =1.
Successive application of Equation (2) with h = 0.01 gives

y(0.01) =1+ 0.1(—1) = 0.99

y(0.02) = 0.99 + 0.01(—0.99) = 0.9801
y(0.03) = 0.9801 + 0.01(—0.9801) = 0.9703
y(0.04) = 0.9703 + 0.01(—0.9703) = 0.9606

The exact solution is y = e and from this the value at x = 0.04 is 0.9608 .

4.4.1 Error Estimates for the Euler Method:
Let the true solution of the differential equation at x = x,, be y(x,,) and also let the
approximate solution be y,,. Now, expanding y(x,,,) by Taylor's series, we get
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2

YCtnes) = YCe) + by Cen) + 5y () 4 -

Y(tnar) = y(x,) + hy'(x,) + ";y"(fn) 4o Where x, < Ty < Xppg coveeeeonns 3)

We usually encounter two types of errors in the solution of differential equations. These are
(1) local errors, and (ii) rounding errors. The local error is the result of replacing the given
differential equation by means of the equation

Yn+1 = Yn T hyn

This error is given by L,,., = —%hzy”(rn) .......... 4)

The total error is then defined by e, = v, — y(x,,) ........... (5)

Since y, is exact, it follows that e, = 0.

Neglecting the rounding error, we write the total solution error as

ent1= Yns1 — Y(Xni1)
=DYn + hyT’l - [y(xn) + hy’(xn) - Ln+1]
=ept h[f(xn' yn) - y’(xn)] + Ly

= eptp =ept h[f(xn' yn) - f(xnl y(xn))] + Lyiq.
By mean value theorem, we write

0
F o) = f Gy 52)) = D = Y G 9 G 2, ¥C5) < 5 3
Hence, we have

ens1 = ep[1+ hfy(xn,fn)] F Lygq v e o (6)

Since e, = 0, we obtain successively:

e1 = Ly; e = [14 hf, (xy, &)Ly + Ly
es = [1+ hf, (xp, ED[1 + hf, (g, E)](Ly + Ly) + L ete.
See the book by Isaacson and Keller [1966] for more details.
Example 2:
We consider, again, the differential equation y’ = —y with the condition y(0) = 1, which we
have solved by Euler's method in Example 1.
Choosing h = 0.01, we have
1+ hf,(x,, &) =1+40.01(—1) = 0.99

and

1
Lns1 = =5h?y"(py) = =0.00005y(py)
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= e

In this problem, y(p,,) < y(x,,), since y’ is negative. Hence we successively obtain

IL,| < 0.00005 =5 x 1075
L, < (0.00005)(0.99) < 5 x 10~°
L] < (0.00005)(0.9801) < 5 x 1075

and so on. For computing the total solution error, we need an estimate of the rounding error.
If we neglect the rounding error, i.e., if we set
Rni1 =0
then using the above bounds, we obtain from Eq. (8.12) the estimates
eo = O
le;] <5x107°
le;] <0.99e; +5x107° < 107*

les| < 0.99e, + 5% 107° < 107* + 5 x 1075
les] <0.99e; +5x 107> <107+ 107* =2 x 10™* = 0.0002

It can be verified that the estimate for e, agrees with the actual error in the value of y(0.04)

obtained in Example 1.

4.4.2 Modified Euler's Method:
Instead of approximating f(x, y) by f(x,,V,) in Equation (1) of 4.4, we now approximate

the integral given in Eq. (8.6) by means of trapezoidal rule to obtain

h
Y1 =0 +51f (0, y0) + fCrp,y1)] (7
We thus obtain the iteration formula
h
yl(”“) =y, + 3 [f(xo,yo) + f(xl,yl(n))],n =0,1,2,.. (8)
where yl(") is the nth approximation to y;. The iteration formula (8.14) can be started by

choosing yl(o) from Euler's formula:

7 = yo + hf (%o, ¥0)
Example 3:

Determine the value of y when x = 0.1 giventhat y(0) =1 and y' = x%+y
We take h = 0.05. With x, = 0 and y, = 1.0, we have f(x,,v,) = 1.0. Hence Euler's

formula gives yl(o) =1+ 0.05(1) = 1.05

Further, x, = 0.05 and f(xliyl(O)) = 1.0525. The average of f(x,,y,) and f(xl,yl(o)) is

1.0262 . The value of yl(l) can therefore be computed by using Equation (8) and we obtain
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y =1.0513

Repeating the procedure, we obtain yl(z) = 1.0513. Hence we take y; = 1.0513, which is
correct to four decimal places.
Next, with x; = 0.05,y, = 1.0513 and h = 0.05, we continue the procedure to obtain y,,

I.e., the value of y when x = 0.1. The results are
v = 11040,y = 1.1055,y = 1.1055

Hence we conclude that the value of y when x = 0.1 is 1.1055 .

4.5 Runge-Kutta Methods:

As already mentioned, Euler's method is less efficient in practical problems since it requires h
to be small for obtaining reasonable accuracy. The

Runge-Kutta methods are designed to give greater accuracy and they possess the advantage
of requiring only the function values at some selected points on the subinterval.

If we substitute y; = y, + hf (xo, y,) on the right side of Eq. (7) of 4.4.2, we obtain

2 lfo+ £ Gro+ B Yo + b))
where fy = f(xq, Vo). If we now set

ki =hfy, and k, = hf (xq + h,yo + k)

then the above equation becomes

Yi =Y+

1
Y1 =Yt E(kl +ky) (D
which is the second-order Runge-Kutta formula. The error in this formula can be shown to be

of order h3 by expanding both sides by Taylor's series. Thus, the left side gives

2 h3
Yo+ hyo + =y + v+
and on the right side
ad d
kz = hf(xO + h,yo + hfo) = h fo + h—f‘l' hfo—f‘l' O(hZ) .
dx, ay,

Since

df (xy) _of . of
dx  0Ox ady

we obtain
k, = hlfo + hfy + 0(h®)] = hfy + h*f5 + O(h?)
so that the right side of Equation (1) gives
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1 1
Yo + 5 [hfo + hfo + h*fg + O(h*)] = yo + hfy + 5 h*f5 + O(h?)
2

h
=Yyo + hyo + 73/6’ + 0(h3)

It therefore follows that the Taylor series expansions of both sides of Equation (1) agree up to
terms of order h2, which means that the error in this formula is of order h3,
More generally, if we set

Where yl = yo + W1k1 + W2 kz ......... (23)
ky = hfy }
R ¢4/
k2 = hf Gxo + aoh,yo + Boks) (2b)
then the Taylor series expansions of both sides of the last equation in (2a) gives the identity
h? (df af
Yo+ b+ (55 fogy) + OGR®) =y + (Wi + Wodhfy
af of
+W2h2 (ao a + ﬁofo _y) + O(h3)

Equating the coefficients of f(x, y) and its derivatives on both sides, we obtain the relations

1 1

W1 + Wz = 1, Wzao = E,Wzﬁo = E (3)

Clearly, @y, = B, and if a is assigned any value arbitrarily, then the remaining parameters
can be determined uniquely. If we set, for example, a, = S, = 1, then we immediately
obtain W; = W, = 1/2, which gives formula equation(1).

It follows, therefore, that there are several second-order Runge-Kutta formulae and that
formulae equations (2) and (3) constitute just one of several such formulae.

Higher-order Runge-Kutta formulae exist, of which we mention only the fourth-order

formula defined by

yl = }IO + Wlkl + Wzkz + W3k3 + W4k4 ree o wenw (4'a)
where
kl = hf(on’o) \
ky = hf(xo + aoh, yo + Bok1) } (4b)
k3 = h,f(xo + alh' Yo + ﬁlkl + vlkz) .........

Ky = hf (o + @phy Yo + Boky + Voky + 61k3),)
where the parameters have to be determined by expanding both sides of the first equation of
(4a) by Taylor's series and securing agreement of terms up to and including those containing
h*. The choice of the parameters is, again, arbitrary and we have therefore several fourth-

order Runge-Kutta formulae. If, for example, we set
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1 1 N
ao—ﬁozi' al:f'
1
Pr=502-1), B =0
i 1 1 5 =1 1 ST ()
N =1-—-7 Vy = ——F7=, =14+—,
1 \/E 2 \/E 1 \/z
W, =W, = > W—1<1 1) W—1(1+1)
1 = 4_6' 2_3 \/EJ 3_3 \/zu
we obtain the method of Gill, whereas the choice
1 1\
do =1 =75, .30=V1=§ |
Pr=B=v,=0, ay=6,=1 ? ..(6)
1 2
W1=W4=g, WZ_W3=g
leads to the fourth-order Runge-Kutta formula, the most commonly used one in practice:
1
_’V1 = yo + g(kl + 2k2 + 2k3 + k4) ......... (7a)
where
ki = hf(%:)’o) )
1 1
kz = hf (xo +_h,yO +_k1>
2 2
1 1 ST /)|
k3 = hf (xo +§h,)’0 +Ek2>

ky =hf(xg +hy,+ks)
in which the error is of order h°. Complete derivation of the formula is exceedingly
complicated, and the interested reader is referred to the book by Levy and Baggot. We
illustrate here the use of the fourth-order formula by means of examples.
Example 1:
Given dy/dx = y — x where y(0) = 2, find y(0.1) and y(0.2) correct to four decimal
places.
(1) Runge-Kutta second-order formula: With h = 0.1, we find k; = 0.2 and k, = 0.21.

Hence
1
v, =y(0.1) =2 +§(O'41) = 2.2050

To determine y, = y(0.2), we note that x, = 0.1 and y, = 2.2050. Hence, k, =
0.1(2.105) = 0.2105 and k, = 0.1(2.4155 — 0.2) = 0.22155.

It follows that
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) ,
Y2 = 2.2050 +(0.2105 + 0.22155) = 2.4210

Proceeding in a similar way, we obtain
y; = y(0.3) = 2.6492 and y, = y(0.4) = 2.8909

We next choose h = 0.2 and compute y(0.2) and y(0.4) directly. With h = 0.2. x, = 0 and
Yo = 2, we obtain k; = 0.4 and k, = 0.44 and hence y(0.2) = 2.4200. Similarly, we obtain

y(0.4) = 2.8880.

From the analytical solution y = x + 1 + e”*, the exact values of y(0.2) and y(0.4) are
respectively 2.4214 and 2.8918 . To study the order of convergence of this method, we
tabulate the values as follows:

X Computed y  Exact y Difference Ratio

0.2 h=0.1:24210 24214 0.0004

h =0.2:2.4200 0.0014 3.5

0.4 h=0.1:2.8909 2.8918 0.0009

h = 0.2:2.8880 0.0038 4.2

It follows that the method has an h2-order of convergence.
(if) Runge-Kutta fourth-order formula: To determine y(0.1), we have x, = 0,y, = 2 and
h = 0.1. We then obtain

kl = 0.2

k, =0.205
ks =0.20525
k,=0.21053
Hence

1

Proceeding similarly, we obtain y(0.2) = 2.4214.

Example 2:

Given dy/dx = 1 + y?, where y = 0 when x = 0, find ¥(0.2), y(0.4) and y(0.6).
We take h = 0.2. With x, = y, = 0, we obtain from (8.21a) and (8.21b),
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k, =0.2

k, = 0.2(1.01) = 0.202

ks = 0.2(1+ 0.010201) = 0.20204
k, = 0.2(1 + 0.040820) = 0.20816

and

1

which is correct to four decimal places.
To compute y(0.4), we take x, = 0.2,y, = 0.2027 and h = 0.2. With these values,
Equations. (7a) and (7b) give

ky = 0.2[1 + (0.2027)2] = 0.2082,
k, = 0.2[1 + (0.3068)2] = 0.2188,
ks = 0.2[1 + (0.3121)2] = 0.2195,
k, = 0.2[1 + (0.4222)2] = 0.2356,

And y(0.4) = 0.2027 4+ 0.2201 = 0.4228
correct to four decimal places.
Finally, taking x, = 0.4,y, = 0.4228 and h = 0.2, and proceeding as above, we obtain
y(0.6) = 0.6841.
Example 3:
We consider the initial value problem y’ = 3x + y/2 with the condition y(0) = 1.
The following table gives the values of y(0.2) by different methods, the exact value being
1.16722193. It is seen that the fourth-order Runge-Kutta method gives the accurate value for
h = 0.05.

Method h Computed value

Euler 0.2 1.10000000
0.1 1.13250000
Modified Euler 0.05 1.14956758
0.2 1.10000000
0.1 1.15000000

Fourth-order Runge-Kutta 0.2  1.16286242
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1.16722083

0.05 1.16722186

Exercises:
1.Given Z—z =1+ xy, y(0)=1, obtain the Taylor series for y(x) and compute y(0,1),

correct to four decimal places.
2. Use Picard’s method to obtain y(0.1) and y(0.2) of the problem defined by

Z—z = x + yx*, y(0)=3.

3. Using Euler’s method, solve the following problems:

(8) 2 = 2x%y, y(0)=1
v _ 2 —
()2 =1+y2, y(0)=0
4.Solve, by Euler’s modified method, the problem Z—z = x + y, y(0)=0.
Choose h=0.2 and compute y(0.2) and y(0.4).
5. Use Runge-Kutta fourth order formula to find y(0.2) and y(0.4) given that

2_,2
yl — y zz , y(O):l

y2+
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Unit vV

Numerical Solutions of Ordinary Differential Equations: Predictor Corrector method —
Milne’s Method — Adams-Bash forth method.

Chapter 5: Sections—5.1t0 5.3

5.1 Predictor-Corrector Methods:

In the methods described so far, to solve a differential equation over a single interval, say from
x = x, t0 x = x,,,+1, We required information only at the beginning of the interval,

l.e. at x = x,,. Predictor-corrector methods are the ones which require function values at
Xn)Xn—1, Xn—2, - TOr the computation of the function value at x,,,; A predictor formula is used
to predict the value of y at x,,,; and then a corrector formula is used to improve the value of
Yn+1-

In Section 5.2 we describe Milne's method which uses forward differences and

in Section 5.3 we derive Predictor-corrector formulae which use backward differences

5.2. Milne's Method:

This method uses Newton's forward difference formula in the form

nn-—1) nn—1)mn-2)
@) = fo +nbfy + =02y + : D3fy 4 o oo (1)
Substituting Equation (1) in the relation y, = y, + f;: fl,y)dx .......... ()
we obtain
Xa nn—1)
Ya=Yo t f [fo +nifo +TA2fo + ] dx
X0

:)’0+hj: [fo + nfy +@A2fo +-~]dn

20 8
:yo + h(4f0 + 8Af0 +?A2f0 +§A3fo + "’)

= Yo+ QA fo+2f) e 3)

after neglecting fourth- and higher-order differences and expressing differences Af,, A% f, and
A3 f, in terms of the function values.

This formula can be used to 'predict’ the value of y, when those of y,, y;,y, and y; are

known. To obtain a ‘corrector' formula, we substitute Newton's formula from (1) in the

relation y, = y, + f;oz fl,y)dx ............. (4)
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and get

z nn-1)
0

1

=Yo+2(fo+4i+fo) o (5)
The value of y, obtained from Equation (3) can therefore be checked by using Equation (5).
The general form of Equations. (3) and (5) are:

p 4h
Yn+1 = Yn-3 t+ ?(an—z = fa-1t an)

AN Y81 = Yooy + 2 (fams + 4 + frrt)
The application of this method is illustrated by the following example.
Example 1:
Solve y' = 1 + y? with y(0) = 0 and we wish to compute y(0.8) and y(1.0).
Solution:
With h = 0.2, the values of y(0.2),y(0.4) and y(0.6) are computed and these values are
given in the table below:

k=02,

&y =0.2(1.01)=0.202,

ky=0.2(14+0.010201)=0.20204,

ky =0.2(1+0.040820) = 0.20816,

;-m.:}:m%m—. 4 2ky +2ks +ky) = 0.2027,

X y ¥y =1+y?
0 0 1.0

0.2 0.2027 1.0411

04 04228 1.1787

0.6 0.6841 1.4681

To obtain y(0.8), we use Equation (3) and obtain

0.8
y(0.8) = 0 +—[2(1.0411) — 1.1787 + 2(1.4681)] = 1.0239
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This gives
y'(0.8) = 2.0480

To correct this value of y(0.8), we use formula equation (5) and obtain

0.2
y(0.8) = 0.4228 + —-[1.1787 + 4(1.4681) + 2.0480] = 1.0294

Proceeding similarly, we obtain y(1.0) = 1.5549. The accuracy in the values of y(0.8) and
v(1.0) can, of course, be improved by repeatedly using formula equation (3).
Example 2:
The differential equation y’ = x2 + y? — 2 satisfies the following data:
x y
-0.1 1.0900
0 1.0000
0.1 0.8900
0.2 0.7605

Use Milne's method to obtain the value of y(0.3).
We first form the following table:
x y y =xt4+y?-2
-0.1 1.0900 -0.80190
0 1.0 -1.0
0.1 0.8900 -1.19790
0.2 0.7605 -1.38164

Using Equation (3), we obtain

4(0.1)
y(03) = 1.09 +—

[2(—1) — (—1.19790) + 2(—1.38164)] = 0.614616

In order to apply Equation (5), we need to compute y'(0.3). We have
y'(0.3) = (0.3)% + (0.614616)% — 2 = —1.532247
Now, Equation (5) gives the corrected value of y(0.3) :

0.1
¥(0.3) = 0.89 +—-[~1.197900 + 4(~138164) + (~1.532247)] = 0.614776
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5.3. Adams-Moulton Method:
Newton's backward difference interpolation formula can be written as
nn+1) nn+1)(n+2)

fy) = fo +nVfy +TV2f0 + 6 Vifo + - €Y)
where
n="2 and fo = £(xo%0)
If this formula is substituted in y, = y, + f;j FOoy)dx ... (2)
we get

1 nn+1)_,
J’1=3’0+j [f0+nvfo+TV fo"‘"']dx
X0

(n+1)

1
=y0+hf [f0+an0+n > V2f0+---]dn
0

= +h(1+1v+5v2+3v3+251v4+ )
= Yo 2 12 8 720 fo

It can be seen that the right side of the above relation depends only on y,, y_4,y_5, ..., all of

which are known. Hence this formula can be used to compute y;. We therefore write it as

1 5 3 251
ylp=y0+h(1+EV+EV2+§V3+%V4+"‘)fo ----------- 3)

This is called Adams-Bashforth formula and is used as a predictor formula (the superscript p
indicating that it is a predicted value).
A corrector formula can be derived in a similar manner by using Newton's backward

difference formula at f; :

f(x;}’) :fl +an1 -|—n(nT+1)V2f1 +n(n+ 12(n+ 2)

Substituting Equation (4) in Equation (3), we obtain

B *1 nn+1)_,
Yi=Yo+ fi +nVf +TV fi+ - |dx
Xo

V3, + e (4)

0 nn+1)
:)’o+hf [f1 +nvf1+TV2f1+~~-]dn
1
— 1 1oz 1oz _ 19 g
m=yo+h(1-tv-Lvr_lys_Dgr_ ) 5)

The right side of Equation (5) depends on yy, yo, y_1, ... where for y; we use y?, the predicted
value obtained from (3). The new value of y; thus obtained from Equation (5) is called the

corrected value, and hence we rewrite the formula as
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c_ lg_ gz _dgs_19os_ )P
YE=yo+h(1-3V-2v2— vyt )2 (6)

This is called Adams-Moulton corrector formula the superscript ¢ indicates that the value
obtained is the corrected value and the superscript p on the right indicates that the predicted
value of y, should be used for computing the value of f(x;, y;).

In practice, however, it will be convenient to use formulae (3) and (6) by ignoring the higher-
order differences and expressing the lower order differences in terms of function values.

Thus, by neglecting the fourth and higher-order differences, formulae (3) and (6) can be
written as yf = yo + 2= (55fy — 59f.1 + 37f- — 9f-3) .cooinnn. (7)
And y§ = yo + - (9FF +19f, = 5f1 + f2) oo (8)

in which the errors are approximately

251 19
2 RS N
720 720
The general forms of formulae (7) and (8) are given by

h
y‘i’ll)+1 =Yn + Z [szn - 59fn—1 + 37fn—2 - 9fn—3]

h
And yﬁ+1 =Yp + 24 [9 np+1 +19f, —5fp-1 + fn—Z]

Such formulae, expressed in ordinate form, are often called explicit predictor corrector

]‘0(4) and h® /‘0(4) respectively.

formulae.

The values y_,, y_, and y_s, which are required on the right side of Equation (7) are
obtained by means of the Taylor's series, or Euler's method, or Runge-Kutta method. Due to
this reason, these methods are called starter methods. For practical problems, Runge-Kutta
fourth-order formula together with formulae (7) and (8) have been found to be the most
successful combination. The following example will illustrate the application of this method.
Example 1:

We consider once again the differential equation given in Example 8.9 with the same
condition, and we wish to compute y(0.8).

Solution:

For this example, the starter values are y(0.6),y(0.4) and y(0.2), which are already

computed in Example by the fourth-order Runge-Kutta method.
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L)

k=02,
ky =0.2(1.01) = 0.202,

ky = 0.2 (14 0.010201) = 0.20204,
ky =0.2 (1+0.040820) = 0.20816,

;-[u.:}_m%m—. 4 2ky +2ks +ky) = 0.2027,

Using now Equation (7) with y, = 0.6841,y_; = 0.4228, y_, = 0.2027 and y_; = 0, we
obtain

0.2
yP(0.8) =0.6841 +—-{55[1 + (0.6841)?] — 59[1 + (0.4228)]

+37[1 + (0.2027)?] — 9}
=1.0233, on simplification.

Using this predicted value on the right side of Eq. (8.29), we obtain

y¢€(0.8) =0.6841 + %{9[1 +(0.0233)%] + 19[1 + (0.6841)?]
—5[1 4 (0.4228)%] + [1 + (0.2027)2]}
= 1.0296, which is correct to four decimal places
The importance of the method lies in the fact that when once y;” is computed from formula

(7), formula (8) can be used iteratively to obtain the value of y; to the accuracy required.

Exercises:
1.State Adam’s predictor — corrector formulae for the solution of the equation
y' = f(x,y),y(xy) = y,. Given the problem y’ +y = 0,y(0) = 1.

Find y(0.1), y(0.2) and y(0.3) by Runge-Kutta fourth order formula and hence obtain y(0.4)

by Adam’s formulae.
2. State Milne’s predictor-corrector formulae for the solution of the problem
y' = f(x,vy),y(xy) =y, Given the initial value problem defined by
y' =vy%+xy, y(0)=1, find, by Taylor’s series, the values of y(0.1), y(0.2) and y(0.3).

Use these values to compute y(0.4) by Milne’s formulae.
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3. Using Milne’s formula, find y(0.8) given that

2 = x — y?,(0)=0, y(0.2)=0.02, y(0.4)=0.0795 and y(0.6)=0.1762.
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