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Unit I 

Finite Differences: Difference Operators–Other Difference Operators – Error propagation in a 

difference table.  

Chapter 1: Sections -1.1 to 1.5 

 

1.1 Introduction: 

The statement 𝑦 = 𝑓(𝑥), 𝑥0 ≤ 𝑥 ≤ 𝑥𝑛 means: corresponding to every value of 𝑥 in the range 

𝑥0 ≤ 𝑥 ≤ 𝑥𝑛, there exists one or more values of 𝑦. Assuming that 𝑓(𝑥) is single-valued and 

continuous and that it is known explicitly, then the values of 𝑓(𝑥) corresponding to certain 

given values of 𝑥, say 𝑥0, 𝑥1, … , 𝑥𝑛 can easily be computed and tabulated. The central problem 

of numerical analysis is the converse one: Given the set of tabular values 

(𝑥0, 𝑦0), (𝑥1, 𝑦1), (𝑥2, 𝑦2),… , (𝑥𝑛 , 𝑦𝑛) satisfying the relation 𝑦 = 𝑓(𝑥) where the explicit 

nature of 𝑓(𝑥) is not known, it is required to find a simpler function, say 𝜙(𝑥), such that 𝑓(𝑥) 

and 𝜙(𝑥) agree at the set of tabulated points. Such a process is called interpolation. If 𝜙(𝑥) is 

a polynomial, then the process is called polynomial interpolation and 𝜙(𝑥) is called the 

interpolating polynomial. Similarly, different types of interpolation arise depending on whether 

𝜙(𝑥) is a finite trigonometric series, series of Bessel functions, etc. In this chapter, we shall be 

concerned with polynomial interpolation only. As a justification for the approximation of an 

unknown function by means of a polynomial, we state here, without proof, a famous theorem 

due to Weierstrass (1885): if 𝑓(𝑥) is continuous in 𝑥0 ≤ 𝑥 ≤ 𝑥𝑛, then given any 𝜀 > 0, there 

exists a polynomial 𝑃(𝑥) such that 

|𝑓(𝑥) − 𝑃(𝑥)| < 𝜀,  for all 𝑥 in (𝑥0, 𝑥𝑛) 

This means that it is possible to find a polynomial 𝑃(𝑥) whose graph remains within the 

region bounded by 𝑦 = 𝑓(𝑥) − 𝜀 and 𝑦 = 𝑓(𝑥) + 𝜀 for all 𝑥 between 𝑥0 and 𝑥𝑛, however 

small 𝜀 may be. 

When approximating a given function 𝑓(𝑥) by means of polynomial 𝜙(𝑥), one may be tempted 

to ask: (i) How should the closeness of the approximation be measured? and (ii) What is the 

criterion to decide the best polynomial approximation to the function? Answers to these 

questions, important though they are for the practical problem of interpolation, are outside the 

scope of this book and will not be attempted here. We will, however, derive in the next section 
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a formula for finding the error associated with the approximation of a tabulated function by 

means of a polynomial. 

1.2 Errors in Polynomial Interpolation: 

Let the function 𝑦(𝑥), defined by the (𝑛 + 1) points (𝑥𝑖, 𝑦𝑖), 𝑖 = 0,1,2,… , 𝑛, be continuous 

and differentiable (𝑛 + 1) times, and let 𝑦(𝑥) be approximated by a polynomial 𝜙𝑛(𝑥) of 

degree not exceeding 𝑛 such that 𝜙𝑛(𝑥𝑖) = 𝑦𝑖 , 𝑖 = 0,1,2,… , 𝑛 ………..(1) 

If we now use 𝜙𝑛(𝑥) to obtain approximate values of 𝑦(𝑥) at some points other than those 

defined by Equation (1), what would be the accuracy of this approximation? Since the 

expression 𝑦(𝑥) − 𝜙𝑛(𝑥) vanishes for 𝑥 = 𝑥0, 𝑥1, …, 𝑥𝑛, we put  

𝑦(𝑥) − 𝜙𝑛(𝑥) = 𝐿Π𝑛+1(𝑥) ……… (2) 

Where Π𝑛+1(𝑥) = (𝑥 − 𝑥0)(𝑥 − 𝑥1)… (𝑥 − 𝑥𝑛)  ………….(3) 

and 𝐿 is to be determined such that Equation (2) holds for any intermediate value of 𝑥, say 

𝑥 = 𝑥′, 𝑥0 < 𝑥
′ < 𝑥𝑛. Clearly, 

𝐿 =
𝑦(𝑥′)−𝜙𝑛(𝑥

′)

Π𝑛+1(𝑥
′)

     ………….(4) 

We construct a function 𝐹(𝑥) such that 𝐹(𝑥) = 𝑦(𝑥) − 𝜙𝑛(𝑥) − 𝐿Π𝑛+1(𝑥)   ………..(5) 

where 𝐿 is given by Equation (4) above, 

It is clear that 

𝐹(𝑥0) = 𝐹(𝑥1) = ⋯ = 𝐹(𝑥𝑛) = 𝐹(𝑥
′) = 0 

that is, 𝐹(𝑥) vanishes (𝑛 + 2) times in the interval 𝑥0 ≤ 𝑥 ≤ 𝑥𝑛; consequently, by the 

repeated application of Rolle's theorem, 𝐹′(𝑥) must vanish (𝑛 + 1) times, 𝐹′′(𝑥) must vanish 

𝑛 times, etc., in the interval 𝑥0 ≤ 𝑥 ≤ 𝑥𝑛. In particular, 𝐹(𝑛+1)(𝑥) must vanish once in the 

interval. 

Let this point be given by 𝑥 = 𝜉, 𝑥0 < 𝜉 < 𝑥𝑛. On differentiating Eq. (3.5) (𝑛 + 1) times 

with respect to 𝑥 and putting 𝑥 = 𝜉, we obtain 

0 = 𝑦(𝑛+1)(𝜉) − 𝐿(𝑛 + 1)! 

so that 𝐿 =
𝑦(𝑛+1)(𝜉)

(𝑛+1)!
     ………….(6) 

Comparison of Equations. (4) and (6) yields the results 

𝑦(𝑥′) − 𝜙𝑛(𝑥
′) =

𝑦(𝑛+1)(𝜉)

(𝑛 + 1)!
Π𝑛+1(𝑥

′) 

Dropping the prime on 𝑥′, we obtain 



 

5 

 

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.  

 

𝑦(𝑥) − 𝜙𝑛(𝑥) =
Π𝑛+1(𝑥)

(𝑛+1)!
𝑦(𝑛+1)(𝜉), 𝑥0 < 𝜉 < 𝑥𝑛  …………(7) 

which is the required expression for the error. Since 𝑦(𝑥) is, generally, unknown and hence we 

do not have any information concerning 𝑦(𝑛+1)(𝑥), formula (7) is almost useless in practical 

computations. On the other hand, it is extremely useful in theoretical work in different branches 

of numerical analysis. In particular, we will use it to determine errors in Newton's interpolating 

formulae which will be discussed in Section 1.6. 

1.3 Finite Differences: 

Assume that we have a table of values (𝑥𝑖, 𝑦𝑖), 𝑖 = 0,1,2,… , 𝑛 of any function 𝑦 = 𝑓(𝑥), the 

values of 𝑥 being equally spaced, i.e., 𝑥𝑖 = 𝑥0 + 𝑖ℎ, 𝑖 = 0,1,2,… , 𝑛. Suppose that we are 

required to recover the values of 𝑓(𝑥) for some intermediate values of 𝑥, or to obtain the 

derivative of 𝑓(𝑥) for some 𝑥 in the range 𝑥0 ≤ 𝑥 ≤ 𝑥𝑛. The methods for the solution to these 

problems are based on the concept of the 'differences' of a function which we now proceed to 

define. 

1.3.1 Forward Differences: 

If 𝑦0, 𝑦1, 𝑦2, … , 𝑦𝑛 denote a set of values of 𝑦, then 𝑦1 − 𝑦0, 𝑦2 − 𝑦1, …, 𝑦𝑛 − 𝑦𝑛−1 are called 

the differences of 𝑦. Denoting these differences by Δ𝑦0, Δ𝑦1, … , Δ𝑦𝑛−1 respectively, we have 

Δ𝑦0 = 𝑦1 − 𝑦0, Δ𝑦1 = 𝑦2 − 𝑦1, … , Δ𝑦𝑛−1 = 𝑦𝑛 − 𝑦𝑛−1 

where Δ is called the forward difference operator and Δ𝑦0, Δ𝑦1, …, are called first forward 

differences. The differences of the first forward differences are called second forward 

differences and are denoted by Δ2𝑦0, Δ
2𝑦1, … Similarly, one can define third forward 

differences, fourth forward differences, etc. 

Thus, 

Δ2𝑦0 = Δ𝑦1 − Δ𝑦0 = 𝑦2 − 𝑦1 − (𝑦1 − 𝑦0)

 = 𝑦2 − 2𝑦1 + 𝑦0
Δ3𝑦0 = Δ

2𝑦1 − Δ
2𝑦0 = 𝑦3 − 2𝑦2 + 𝑦1 − (𝑦2 − 2𝑦1 + 𝑦0)

 = 𝑦3 − 3𝑦2 + 3𝑦1 − 𝑦0
Δ4𝑦0 = Δ

3𝑦1 − Δ
3𝑦0 = 𝑦4 − 3𝑦3 + 3𝑦2 − 𝑦1 − (𝑦3 − 3𝑦2 + 3𝑦1 − 𝑦0)

 = 𝑦4 − 4𝑦3 + 6𝑦2 − 4𝑦1 + 𝑦0

 

It is, therefore, clear that any higher-order difference can easily be expressed in terms of the 

ordinates, since the coefficients occurring on the right side are the binomial coefficients. 

Table 1.1 shows how the forward differences of all orders can be formed: 
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Table 1.1 Forward Difference Table 

 

𝑥 𝑦0 Δ Δ2 Δ3 Δ4 Δ5 Δ6 

𝑥0 𝑦0 Δ𝑦0      

𝑥1 𝑦1 Δ𝑦1 Δ2𝑦0     

𝑥2 𝑦2 Δ𝑦1 Δ2𝑦1 Δ3𝑦0 Δ4𝑦0   

𝑥3 𝑦3 Δ𝑦2 Δ2𝑦2 Δ3𝑦1 Δ4𝑦1 Δ5𝑦0 Δ6𝑦0 

𝑥4 𝑦4 Δ𝑦3 Δ2𝑦3 Δ3𝑦2 Δ4𝑦2 Δ5𝑦1  

𝑥5 𝑦5 Δ𝑦4 Δ2𝑦4 Δ3𝑦3    

𝑥6 𝑦6 Δ𝑦5      

In practical computations, the forward difference table can be formed in the following way. 

For the data points (𝑥𝑖, 𝑦𝑖), 𝑖 = 0,1,2,… , 𝑛 and 𝑥𝑖 = 𝑥0 + 𝑖ℎ, we have 

Δ𝑦𝑗 = 𝑦𝑗+1 − 𝑦𝑖 , 𝑗 = 0,1,… , 𝑛 − 1 

Denoting 𝑦𝑗 as DEL(0, 𝑗), the above equation can be written as 

Δ𝑦𝑗 = DEL(0, 𝑗 + 1) − DEL(0, 𝑗) = DEL(1, 𝑗) 

It follows that 

Δ𝑖𝑦𝑗 = DEL(𝑖 − 1, 𝑗 + 1) − DEL(𝑖 − 1, 𝑗) 

which is the 𝑖 th forward difference of 𝑦𝑗. 

For the data points (𝑥𝑖, 𝑦𝑖), 𝑖 = 0,1,2,… ,6, we have difference Table 1.2. 

Table 1.2 Forward Difference Table 

𝑥 𝑦 Δ Δ2 Δ3 Δ4 Δ5 Δ6 

𝑥0 DEL(0,0) DEL(1,0)      

𝑥1 DEL(0,1) DEL(1,1) DEL(2,0)     

𝑥2 DEL(0,2) DEL(3,0)      

𝑥3 DEL(0,3) DEL(1,2) DEL(2,1) DEL(2,2) DEL(3,1) DEL(4,0) DEL(5,0) 
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𝑥4 DEL(0,4) DEL(1,3) DEL, 1) DEL(3,2) DEL(6) DEL(5,1) DEL(1,0) 

𝑥5 DEL(0,5) DEL, 4) DEL(2,4) DEL(3,3)    

𝑥6 DEL(0,6) DEL(1,5)      

 

In Table 1.2 

DEL(4,0) =DEL(3,1) − DEL(3,0)
=DEL(2,2) − DEL(2,1) − [DEL(2,1) − DEL(2,0)]

=DEL(1,3) − DEL(1,2) − 2[DEL(1,2) − DEL(1,1)]

 +DEL(1,1) − DEL(1,0)
=DEL(0,4) − DEL(0,3) − 3[DEL(0,3) − DEL(0,2)]

 +3[DEL(0,2) − DEL(0,1)] − [DEL(0,1) − DEL(0,0)]

=DEL(0,4) − 4DEL(0,3) + 6DEL(0,2) − 4DEL(0,1) + DEL(0,0)
=𝑦4 − 4𝑦3 + 6𝑦2 − 4𝑦1 + 𝑦0

 

The forward difference table can now be formed by the simple statements: 

Do i = 1(1)n 

Do j = O(1)n - i 

DEL(i, j) = DEL(i - 1, j + 1) - DEL(i - 1, j) 

Next j 

Next i 

End 

 

1.3.2 Backward Differences: 

The differences 𝑦1 − 𝑦0, 𝑦2 − 𝑦1, … , 𝑦𝑛 − 𝑦𝑛−1 are called first backward differences if they 

are denoted by ∇𝑦1, ∇𝑦2, … , ∇𝑦𝑛 respectively, so that 

∇𝑦1 = 𝑦1 − 𝑦0, ∇𝑦2 = 𝑦2 − 𝑦1,
⋮
⋮
⋮

∇𝑦𝑛 = 𝑦𝑛 − 𝑦𝑛−1

 

where ∇ is called the backward difference operator. In a similar way, one can define 

backward differences of higher orders. 

Thus, we obtain 
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∇2𝑦2 = ∇𝑦2 − ∇𝑦1
 = 𝑦2 − 𝑦1 − (𝑦1 − 𝑦0) = 𝑦2 − 2𝑦1 + 𝑦0

∇3𝑦3 = ∇
2𝑦3 − ∇

2𝑦2
 = 𝑦3 − 3𝑦2 + 3𝑦1 − 𝑦0, etc. 

 

With the same values of 𝑥 and 𝑦 as in Table 3.1, a backward difference Table 3.3 can be 

formed: 

Table 1.3 Backward Difference Table 

𝑥 𝑦 ∇ ∇2 ∇3 ∇4 ∇5 ∇6 

𝑥0 𝑦0       

𝑥1 𝑦1 ∇𝑦1      

𝑥2 𝑦2 ∇𝑦2 ∇2𝑦2     

𝑥3 𝑦3 ∇𝑦3 ∇2𝑦3 ∇3𝑦3    

𝑥4 𝑦4 ∇𝑦4 ∇2𝑦4 ∇3𝑦4 ∇4𝑦4   

𝑥5 𝑦5 ∇𝑦5 ∇2𝑦5 ∇3𝑦5 ∇4𝑦5 ∇5𝑦5  

𝑥6 𝑦6 ∇𝑦6 ∇2𝑦6 ∇3𝑦6 ∇4𝑦6 ∇5𝑦6 ∇6𝑦6 

1.3.3 Central Differences: 

The central difference operator 𝛿 is defined by the relations 

𝑦1 − 𝑦0 = 𝛿𝑦1/2, 𝑦2 − 𝑦1 = 𝛿𝑦3/2, … , 𝑦𝑛 − 𝑦𝑛−1 = 𝛿𝑦𝑛−1/2 

Similarly, higher-order central differences can be defined. With the values of 𝑥 and 𝑦 as in 

the preceding two tables, a central difference Table 3.4 can be formed: 

Table 1.4 Central Difference Table 

𝑥 𝑦 𝛿 𝛿2 𝛿3 𝛿4 𝛿5 𝛿6 

𝑥0 𝑦0 𝛿𝑦1/2      

𝑥1 𝑦1 𝛿𝑦3/2 𝛿2𝑦1 𝛿3𝑦3/2    

𝑥2 𝑦2 𝛿𝑦5/2 𝛿2𝑦2 𝛿3𝑦5/2 𝛿4𝑦2 𝛿5  

𝑥3 𝑦3 𝛿𝑦7/2 𝛿2𝑦3 𝛿3𝑦7/2 𝛿4𝑦3 𝛿5𝑦7/2 𝛿6𝑦3 
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𝑥4 𝑦4 𝛿𝑦9/2 𝛿2𝑦4 𝛿3𝑦9/2 𝛿4𝑦4   

𝑥5 𝑦5 𝛿𝑦11/2 𝛿2𝑦5     

𝑥6 𝑦6       

 

It is clear from all the four tables that in a definite numerical case, the same numbers occur in 

the same positions whether we use forward, backward or central differences. Thus, we obtain 

Δ𝑦0 = ∇𝑦1 = 𝛿𝑦1/2, Δ
3𝑦2 = ∇

3𝑦5 = 𝛿
3𝑦7/2, … 

1.3.4 Symbolic Relations and Separation of Symbols: 

Difference formulae can easily be established by symbolic methods, using the shift operator 

𝐸 and the averaging or the mean operator 𝜇, in addition to the operators, Δ, ∇ and 𝛿 already 

defined. 

The averaging operator 𝜇 is defined by the equation: 

𝜇𝑦𝑟 =
1

2
(𝑦𝑟+1/2 + 𝑦𝑟−1/2) 

The shift operator 𝐸 is defined by the equation: 

𝐸𝑦𝑟 = 𝑦𝑟+1 

which shows that the effect of 𝐸 is to shift the functional value 𝑦𝑟 to the next higher value 

𝑦𝑟+1. A second equation with 𝐸 gives 

𝐸2𝑦𝑟 = 𝐸(𝐸𝑦𝑟) = 𝐸𝑦𝑟+1 = 𝑦𝑟+2 

and in general, 

𝐸𝑛𝑦𝑟 = 𝑦𝑟+𝑛 

It is now easy to derive a relationship between Δ and 𝐸, for we have 

Δ𝑦0 = 𝑦1 − 𝑦0 = 𝐸𝑦0 − 𝑦0 = (𝐸 − 1)𝑦0 

and hence 

Δ ≡ 𝐸 − 1  or  𝐸 ≡ 1 + Δ  ……… . (1)  

We can now express any higher-order forward difference in terms of the given function 

values. For example, 

Δ3𝑦0 = (𝐸 − 1)
3𝑦0 = (𝐸

3 − 3𝐸2 + 3𝐸 − 1)𝑦0 = 𝑦3 − 3𝑦2 + 3𝑦1 − 𝑦0 

From the definitions, the following relations can easily be established: 
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∇= 1 − 𝐸−1

𝛿 = 𝐸
1

2 − 𝐸−
1

2,

Δ = ∇𝐸 = 𝛿𝐸1/2.

𝜇 =
1

2
(𝐸1/2 + 𝐸−1/2),      ……….(2) 

   𝜇2 ≡ 1 + (1/4)𝛿2  

As an example, we prove the relation 

𝜇2 ≡ 1 + (1/4)𝛿2 

We have, by definition, 

𝜇𝑦𝑟 =
1

2
(𝑦𝑟+1/2 + 𝑦𝑟−1/2)

 =
1

2
(𝐸1/2𝑦𝑟 + 𝐸

−1/2𝑦𝑟)

 =
1

2
(𝐸1/2 + 𝐸−1/2)𝑦𝑟 .

 

Hence 

𝜇 =
1

2
(𝐸1/2 + 𝐸−1/2) 

and 

𝜇2 =
1

4
(𝐸1/2 + 𝐸−1/2)

2

 =
1

4
(𝐸 + 𝐸−1 + 2)

 =
1

4
[(𝐸1/2 − 𝐸−1/2)

2
+ 4]

 =
1

4
(𝛿2 + 4).

 

We therefore have 

𝜇 ≡ √1 +
1

4
𝛿2 

Finally, we define the operator 𝐷 such that 

𝐷𝑦(𝑥) =
𝑑

𝑑𝑥
𝑦(𝑥). 

To relate 𝐷 to 𝐸, we start with the Taylor's series 

𝑦(𝑥 + ℎ) = 𝑦(𝑥) + ℎ𝑦′(𝑥) +
ℎ2

2!
𝑦′′(𝑥) +

ℎ3

3!
𝑦′′′(𝑥) + ⋯ 

This can be written in the symbolic form 

𝐸𝑦(𝑥) = (1 + ℎ𝐷 +
ℎ2𝐷2

2!
+
ℎ3𝐷3

3!
+⋯)𝑦(𝑥). 
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Since the series in the brackets is the expansion of 𝑒ℎ𝐷, we obtain the interesting result 

𝐸 ≡ 𝑒ℎ𝐷  ………… . . (3)  

Using the relation (1), a number of useful identities can be derived. This relation is used to 

separate the effect of 𝐸 into that of the powers of Δ and this method of separation is called the 

method of separation of symbols. The following examples demonstrate the use of this 

method. 

Example 1: 

Using the method of separation of symbols, show that 

Δ𝑛𝑢𝑥−𝑛 = 𝑢𝑥 − 𝑛𝑢𝑥−1 +
𝑛(𝑛 − 1)

2
𝑢𝑥−2 +⋯+ (−1)

𝑛𝑢𝑥−𝑛 

Solution: 

To prove this result, we start with the right-hand side. Thus, 

𝑢𝑥  = 𝑛𝑢𝑥−1 +
𝑛(𝑛 − 1)

2
𝑢𝑥−2 +⋯+ (−1)

𝑛𝑢𝑥−𝑛

 = 𝑢𝑥 − 𝑛𝐸
−1𝑢𝑥 +

𝑛(𝑛 − 1)

2
𝐸−2𝑢𝑥 +⋯+ (−1)

𝑛𝐸−𝑛𝑢𝑥

 = [1 − 𝑛𝐸−1 +
𝑛(𝑛 − 1)

2
𝐸−2 +⋯+ (−1)𝑛𝐸−𝑛] 𝑢𝑥

 = (1 − 𝐸−1)𝑛𝑢𝑥

 = (1 −
1

𝐸
)
𝑛

𝑢𝑥

 = (
𝐸 − 1

𝐸
)
𝑛

𝑢𝑥

 =
Δ𝑛

𝐸𝑛
𝑢𝑥

 = Δ𝑛𝐸−𝑛𝑢𝑥
 = Δ𝑛𝑢𝑥−𝑛

 

which is the left-hand side. 

Example 2: 

Show that 

𝑒𝑥 (𝑢0 + 𝑥Δ𝑢0 +
𝑥2

2!
Δ2𝑢0 +⋯) = 𝑢0 + 𝑢1𝑥 + 𝑢2

𝑥2

2!
+⋯ 

Solution: 

Now, 
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𝑒𝑥 (𝑢0 + 𝑥Δ𝑢0 +
𝑥2

2!
Δ2𝑢0 +⋯) = 𝑒

𝑥 (1 + 𝑥Δ +
𝑥2Δ2

2!
+⋯) 𝑢0

 = 𝑒𝑥𝑒𝑥Δ𝑢0 = 𝑒
𝑥(1+Δ)𝑢0

 = 𝑒𝑥𝐸𝑢0

 

 = (1 + 𝑥𝐸 +
𝑥2𝐸2

2!
+ ⋯)𝑢0

 = 𝑢0 + 𝑥𝑢1 +
𝑥2

2!
𝑢2 +⋯

 

which is the required result. 

1.4. Detection of Errors by Use of Difference Tables: 

Difference tables can be used to check errors in tabular values. Suppose that there is an error 

of +1 unit in a certain tabular value. As higher differences are formed, the error spreads out 

fanwise, and is at the same time, considerably magnified, as shown in Table 1.5. 

Table 1.5 Detection of Errors using Difference Table 

𝑦 Δ Δ2 Δ3 Δ4 Δ5 

0 0     

0 0 0 0 0  

0 0 0 0 1 1 

0 0 1 -3 -4 -5 

0 1 -2 3 -10 -10 

0 -1 0 0 0 5 

0 0 0 0 -1  

0 0 0    

0 0 0    

0 0     

This table shows the following characteristics: 

(i) The effect of the error increases with the order of the differences. 

(ii) The errors in any one column are the binomial coefficients with alternating signs. 
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(iii) The algebraic sum of the errors in any difference column is zero, and 

(iv) The maximum error occurs opposite the function value containing the error. These facts 

can be used to detect errors by difference tables. We illustrate this by means of an example. 

 

*The student should note that Equation (1) does not mean that the operators 𝐸 and Δ have 

any existence as separate entities; it merely implies that the effect of the operator 𝐸 on 𝑦0 is 

the same as that of the operator (1 + Δ) on 𝑦0. 

Example 3:  

Consider the following difference table: 

𝑥 𝑦 Δ Δ2 Δ3 Δ4 

1 3010     

2 3424 414 -36   

3 3802 378 -75 +39 +139 

4 4105 303 +64 -132 -271 

5 4772 297 -68 +49 +181 

6 5051 280 -16  -46 

7 5315 264    

8      

  

The term -271 in the fourth difference column has fluctuations of 449 and 452 on either side 

of it. Comparison with Table 3.5 suggests that there is an error of -45 in the entry for 𝑥 = 4. 

The correct value of 𝑦 is therefore 4105 + 45 = 4150, which shows that the last-two digits 

have been transposed, a very common form of error. The reader is advised to form a new 

difference table with this correction, and to check that the third differences are now practically 

constant. 

If an error is present in a given data, the differences of some order will become alternating in 

sign. Hence, higher-order differences should be formed till the error is revealed as in the above 

example. If there are errors in several tabular values, then it is not easy to detect the errors by 

differencing. 
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1.5 Differences of a Polynomial: 

Let 𝑦(𝑥) be a polynomial of the 𝑛th degree so that 

𝑦(𝑥) = 𝑎0𝑥
𝑛 + 𝑎1𝑥

𝑛−1 + 𝑎2𝑥
𝑛−2 +⋯+ 𝑎𝑛 . Then we obtain 

𝑦(𝑥 + ℎ) − 𝑦(𝑥) = 𝑎0[(𝑥 + ℎ)
𝑛 − 𝑥𝑛] + 𝑎1[(𝑥 + ℎ)

𝑛−1 − 𝑥𝑛−1] + ⋯

 = 𝑎0(𝑛ℎ)𝑥
𝑛−1 + 𝑎1

′𝑥𝑛−2 +⋯+ 𝑎𝑛
′ ,

 

where 𝑎1
′ , 𝑎2

′ , … , 𝑎𝑛
′  are the new coefficients. 

The above equation can be written as 

Δ𝑦(𝑥) = 𝑎0(𝑛ℎ)𝑥
𝑛−1 + 𝑎1

′𝑥𝑛−2 +⋯+ 𝑎𝑛
′ , 

which shows that the first difference of a polynomial of the 𝑛th degree is a polynomial of 

degree (𝑛 − 1). Similarly, the second difference will be a polynomial of degree (𝑛 − 2), and 

the coefficient of 𝑥𝑛−2 will be 𝑎0𝑛(𝑛 − 1)ℎ
2. 

Thus the 𝑛th difference is 𝑎0𝑛! ℎ
𝑛, which is a constant. Hence, the (𝑛 + 1) th, and higher 

differences of a polynomial of 𝑛th degree will be zero. Conversely, if the 𝑛th differences of a 

tabulated function are constant and the (𝑛 + 1) th, (𝑛 + 2) th, …, differences all vanish, then 

the tabulated function represents a polynomial of degree 𝑛. It should be noted that these results 

hold good only if the values of 𝑥 are equally spaced. The converse is important in numerical 

analysis since it enables us to approximate a function by a polynomial if its differences of some 

order become nearly constant. 

 

Exercises: 

 1.Form a table of differences for the function 𝑓(𝑥) = 𝑥3 + 5𝑥 − 7 for 

     𝑥 = −1,0,1,2,3,4,5. Continue the table to obtain 𝑓(6) and 𝑓(7). 

2. Evaluate 

(a) Δ2𝑥3 

(b) Δ2(cos 𝑥) 

(c) Δ[(𝑥 + 1)(𝑥 + 2)] 

(d) Δ(tan−1 𝑥) 

(e) Δ [
𝑓(𝑥)

𝑔(𝑥)
]. 

3. Locate and correct the error in the following table: 
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𝑥 2.5 3.0 3.5 4.0 4.5 5.0 5.5 

𝑦 4.32 4.83 5.27 5.47 6.26 6.79 7.23 

  

 4. Locate and correct the error in the following table: 

𝑥 1.00 1.05 1.10 1.15 1.20 1.25 1.30 

𝑒𝑥 2.7183 2.8577 3.0042 3.1528 3.3201 3.4903 3.6693 

  

 5. Prove the following: 

(a) 𝑦𝑥 = 𝑦𝑥−1 + Δ𝑦𝑥−2 + Δ
2𝑦𝑥−3 +⋯+ Δ

𝑛−1𝑦𝑥−𝑛 + Δ
𝑛𝑦𝑥−(𝑛+1) 

(b) Δ𝑛𝑦𝑥 = 𝑦𝑥+𝑛 −  
𝑛𝐶1𝑦𝑥+𝑛−1 +  

𝑛𝐶2𝑦𝑥+𝑛−2 +⋯+ (−1)
𝑛𝑦𝑥 

(c) 𝑦1 + 𝑦2 +⋯+ 𝑦𝑛 =  
𝑛𝐶1𝑦1 +  

𝑛𝐶2Δ𝑦1 +⋯+ Δ
𝑛−1𝑦1 

6. From the following table, find the number of students who obtained marks between 60      

    and 70 : 

Marks obtained 0 − 40 40 − 60 60 − 80 80 − 100 100 − 120 

No. of students 250 120 100 70 50 

  

 7. Find the polynomial which approximates the following values: 

𝑥 3 4 5 6 7 8 9 

𝑦 13 21 31 43 57 73 91 

  

      If the number 31 is the fifth term of the series, find the first and the tenth terms of the     

      series. 

8. Find 𝑓(0.23) and 𝑓(0.29) from the following table: 

𝑥 0.20 0.22 0.24 0.26 0.28 0.30 

𝑓(𝑥) 1.6596 1.6698 1.6804 1.6912 1.7024 1.7139 
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 Unit II 

 Interpolation: Newton’s Interpolation Formulae – Central Difference Interpolation 

Formulae: Gauss Forward and Backward and Sterling’s (only) – Lagrange’s Interpolation 

Formula – Divided Differences– Newton’s Divided Differences formula. 

 Chapter 2: Sections-2.1 to 2.5 

  

 2.1. Newton's Formulae for Interpolation: 

 Given the set of (𝑛 + 1) values, viz., (𝑥0, 𝑦0), (𝑥1, 𝑦1), (𝑥2, 𝑦2),… , (𝑥𝑛 , 𝑦𝑛), of 𝑥 and 𝑦, it 

is required to find 𝑦𝑛(𝑥), a polynomial of the 𝑛th degree such that 𝑦 and 𝑦𝑛(𝑥) agree at 

the tabulated points. Let the values of 𝑥 be equidistant,  

 i.e. let 𝑥𝑖 = 𝑥0 + 𝑖ℎ, 𝑖 = 0,1,2, … , 𝑛. 

 Since 𝑦𝑛(𝑥) is a polynomial of the 𝑛th degree, it may be written as 

 

𝑦𝑛(𝑥) = 𝑎0 + 𝑎1(𝑥 − 𝑥0) + 𝑎2(𝑥 − 𝑥0)(𝑥 − 𝑥1)

+𝑎3(𝑥 − 𝑥0)(𝑥 − 𝑥1)(𝑥 − 𝑥2) + ⋯

+𝑎𝑛(𝑥 − 𝑥0)(𝑥 − 𝑥1)(𝑥 − 𝑥2)… (𝑥 − 𝑥𝑛−1).

} ……….(1) 

 Imposing now the condition that 𝑦 and 𝑦𝑛(𝑥) should agree at the set of tabulated points, 

we obtain 

 𝑎0 = 𝑦0; 𝑎1 =
𝑦1−𝑦0

𝑥1−𝑥0
=
Δ𝑦0

ℎ
; 𝑎2 =

Δ2𝑦0

ℎ22!
; 𝑎3 =

Δ3𝑦0

ℎ33!
;⋯ ; 𝑎𝑛 =

Δ𝑛𝑦0

ℎ𝑛𝑛!
; 

 Setting 𝑥 = 𝑥0 + 𝑝ℎ and substituting for 𝑎0, 𝑎1, … , 𝑎𝑛, Equation (1) gives 

 𝑦𝑛(𝑥) =𝑦0 + 𝑝Δ𝑦0 +
𝑝(𝑝−1)

2!
Δ2𝑦0 +

𝑝(𝑝−1)(𝑝−2)

3!
Δ3𝑦0 +⋯+

𝑝(𝑝−1)(𝑝−2)…….(p−n+1)

n!
Δn𝑦0           

                                                                                                                                          …………..(2) 

 which is Newton's forward difference interpolation formula and is useful for 

interpolation near the beginning of a set of tabular values. 

 To find the error committed in replacing the function 𝑦(𝑥) by means of the polynomial 

𝑦𝑛(𝑥), 

  𝑦(𝑥) − 𝑦𝑛(𝑥) =
(𝑥−𝑥0)(𝑥−𝑥1)…(𝑥−𝑥𝑛)

(𝑛+1)!
𝑦(𝑛+1)(𝜉), 𝑥0 < 𝜉 < 𝑥𝑛    ……….. (3) 

 As remarked earlier we do not have any information concerning 𝑦(𝑛+1)(𝑥), and 

therefore, formula given in Equation (3) is useless in practice. Nevertheless, 

if 𝑦(𝑛+1)(𝑥) does not vary too rapidly in the interval, a useful estimate of the derivative 

can be obtained in the following way. Expanding 𝑦(𝑥 + ℎ) by Taylor's series theorem, 

we obtain 
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 𝑦(𝑥 + ℎ) = 𝑦(𝑥) + ℎ𝑦′(𝑥) +
ℎ2

2!
𝑦′′(𝑥) +⋯ 

 Neglecting the terms containing ℎ2 and higher powers of ℎ, this gives 

 𝑦′(𝑥) ≈
1

ℎ
[𝑦(𝑥 + ℎ) − 𝑦(𝑥)] =

1

ℎ
Δ𝑦(𝑥). 

 Writing 𝑦′(𝑥) as 𝐷𝑦(𝑥) where 𝐷 ≡ 𝑑/𝑑𝑥, the differentiation operator, the above 

equation gives the operator relation 

 𝐷 ≡
1

ℎ
Δ  and so  𝐷𝑛+1 ≡

1

ℎ𝑛+1
Δ𝑛+1 

 We thus obtain 𝑦(𝑛+1)(𝑥) ≈
1

ℎ𝑛+1
Δ𝑛+1𝑦(𝑥) ………..(4) 

 Equation (3) can, therefore, be written as 

  𝑦(𝑥) − 𝑦𝑛(𝑥) =
𝑝(𝑝−1)(𝑝−2)…(𝑝−𝑛)

(𝑛+1)!
Δ𝑛+1𝑦(𝜉) ………(5) 

 in which form it is suitable for computation. 

Instead of assuming 𝑦𝑛(𝑥) as in Equation (1), if we choose it in the form 

 

𝑦𝑛(𝑥) =𝑎0 + 𝑎1(𝑥 − 𝑥𝑛) + 𝑎2(𝑥 − 𝑥𝑛)(𝑥 − 𝑥𝑛−1)

 +𝑎3(𝑥 − 𝑥𝑛)(𝑥 − 𝑥𝑛−1)(𝑥 − 𝑥𝑛−2) + ⋯

 +𝑎𝑛(𝑥 − 𝑥𝑛)(𝑥 − 𝑥𝑛−1)… (𝑥 − 𝑥1)
 

 and then impose the condition that 𝑦 and 𝑦𝑛(𝑥) should agree at the tabulated points 

𝑥𝑛, 𝑥𝑛−1, … , 𝑥2, 𝑥1, 𝑥0, we obtain (after some simplification) 

 𝑦𝑛(𝑥) = 𝑦𝑛 + 𝑝∇𝑦𝑛 +
𝑝(𝑝+1)

2!
∇2𝑦𝑛 +⋯+

𝑝(𝑝+1)…(𝑝+𝑛−1)

𝑛!
∇𝑛𝑦𝑛………(6)  

 where 𝑝 = (𝑥 − 𝑥𝑛)/ℎ. 

This is Newton's backward difference interpolation formula and it uses tabular values to 

the left of 𝑦𝑛. This formula is therefore useful for interpolation near the end of the tabular 

values. 

 It can be shown that the error in this formula may be written as 

  𝑦(𝑥) − 𝑦𝑛(𝑥) =
𝑝(𝑝+1)(𝑝+2)…(𝑝+𝑛)

(𝑛+1)!
∇𝑛+1𝑦(𝜉)  ………..(7) 

 where 𝑥0 < 𝑥 < 𝑥𝑛 and 𝑥 = 𝑥𝑛 + 𝑝ℎ. 

 The following examples illustrate the use of these formulae. 

Example 1: 

 Find the cubic polynomial which takes the following values: 

  𝑦(1) = 24, 𝑦(3) = 120, 𝑦(5) = 336, and 𝑦(7) = 720. Hence, or otherwise, obtain the 

value of 𝑦(8). 

 𝐒𝐨𝐥𝐮𝐭𝐢𝐨𝐧: 
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 We form the difference table: 

  

 Here ℎ = 2. With 𝑥0 = 1, we have 𝑥 = 1 + 2𝑝 or 𝑝 = (𝑥 − 1)/2. Substituting this value 

of 𝑝 in equation (2), we obtain 

 𝑦(𝑥) = 24 +
𝑥−1

2
(96) +

(
𝑥−1

2
)(
𝑥−1

2
−1)

2
(120) +

(
𝑥−1

2
)(
𝑥−1

2
−1)(

𝑥−1

2
−2)

6
(48)

 = 𝑥3 + 6𝑥2 + 11𝑥 + 6.

 

 To determine 𝑦(8), we observe that 𝑝 = 7/2. Hence, Eq. (3.10) gives: 

 𝑦(8) = 24 +
7

2
(96) +

(7/2)(7/2−1)

2
(120) +

(7/2)(7/2−1)(7/2−2)

6
(48) = 990. 

 Direct substitution in 𝑦(𝑥) also yields the same value. 

Note:  

 This process of finding the value of 𝑦 for some value of 𝑥 outside the given range is 

called extrapolation and this example demonstrates the fact that if a tabulated function is 

a polynomial, then both interpolation and extrapolation would give exact values. 

 Example 2: 

 Using Newton's forward difference formula, find the sum 

 𝑆𝑛 = 1
3 + 23 + 33 +⋯+ 𝑛3 

 We have 

 𝑆𝑛+1 = 1
3 + 23 + 33 +⋯+ 𝑛3 + (𝑛 + 1)3 

 Hence 

 𝑆𝑛+1 − 𝑆𝑛 = (𝑛 + 1)
3 

 or Δ𝑆𝑛 = (𝑛 + 1)
3 

 Solution: 

 It follows that 

 

Δ2𝑆𝑛 = Δ𝑆𝑛+1 − Δ𝑆𝑛 = (𝑛 + 2)
3 − (𝑛 + 1)3 = 3𝑛2 + 9𝑛 + 7

Δ3𝑆𝑛 = 3(𝑛 + 1)
2 + 9𝑛 + 7 − (3𝑛2 + 9𝑛 + 7) = 6𝑛 + 12

Δ4𝑆𝑛 = 6(𝑛 + 1) + 12 − (6𝑛 + 12) = 6
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 Since Δ5𝑆𝑛 = Δ
6𝑆𝑛 = ⋯ = 0, 𝑆𝑛 is a fourth-degree polynomial in 𝑛. 

Further, 

 𝑆1 = 1, Δ𝑆1 = 8, Δ
2𝑆1 = 19, Δ

3𝑆1 = 18, Δ
4𝑆1 = 6 

 Equation (2) gives 

 

𝑆𝑛 =1+ (𝑛 − 1)(8) +
(𝑛−1)(𝑛−2)

2
(19) +

(𝑛−1)(𝑛−2)(𝑛−3)

6
(18)

 +
(𝑛−1)(𝑛−2)(𝑛−3)(𝑛−4)

24
(6)

=
1

4
𝑛4 +

1

2
𝑛3 +

1

4
𝑛2

=[
𝑛(𝑛+1)

2
]
2

.

 

 Example 3:  

 Values of 𝑥 (in degrees) and sin 𝑥 are given in the following table: 

𝑥 (in degrees) sin 𝑥 

15 0.2588190 

20 0.3420201 

25 0.4226183 

30 0.5 

35 0.5735764 

40 0.6427876 

  

 Determine the value of sin 38∘. 

 The difference table is 
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 To find sin 38∘, we use Newton's backward difference formula with 𝑥𝑛 = 40 and 

  𝑥 = 38. This gives 

 𝑝 =
𝑥−𝑥𝑛

ℎ
=
38−40

5
= −

2

5
= −0.4. 

 Hence, using Equation (6), we obtain 

 

𝑦(38) =0.6427876− 0.4(0.0692112) +
−0.4(−0.4+1)

2
(−0.0043652)

 +
(−0.4)(−0.4+1)(−0.4+2)

6
(−0.0005599)

 +
(−0.4)(−0.4+1)(−0.4+2)(−0.4+3)

24
(0.0000289)

 +
(−0.4)(−0.4+1)(−0.4+2)(−0.4+3)(−0.4+4)

120
(0.0000041)

=0.6427876− 0.02768448+ 0.00052382+ 0.00003583− 0.00000120
=0.6156614.

 

 Example 4:  

 Find the missing term in the following table: 

𝑥 𝑦 

0 1 

1 3 

2 9 

3 - 

4 81 

  

 Explain why the result differs from 33 = 27. 
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 Solution: 

 Since four points are given, the given data can be approximated by a third-degree 

polynomial in 𝑥. Hence Δ4𝑦0 = 0. Substituting Δ = 𝐸 − 1 and simplifying, we get 

 𝐸4𝑦0 − 4𝐸
3𝑦0 + 6𝐸

2𝑦0 − 4𝐸𝑦0 + 𝑦0 = 0 

 Since 𝐸𝑟𝑦0 = 𝑦𝑟, the above equation becomes 

 𝑦4 − 4𝑦3 + 6𝑦2 − 4𝑦1 + 𝑦0 = 0 

 Substituting for 𝑦0, 𝑦1, 𝑦2 and 𝑦4 in the above, we obtain 

 𝑦3 = 31 

 The tabulated function is 3𝑥 and the exact value of 𝑦(3) is 27 . The error is due to the 

fact that the exponential function 3𝑥 is approximated by means of a polynomial in 𝑥 of 

degree 3. 

Example 5: 

 The table below gives the values of tan 𝑥 for 0.10 ≤ 𝑥 ≤ 0.30 : 

𝑥 
𝑦

= tan 𝑥 

0.10 0.1003 

0.15 0.1511 

0.20 0.2027 

0.25 0.2553 

0.30 0.3093 

  

 Find : (a) tan 0.12 (b) tan 0.26, (c) tan 0.40 and (d) tan 0.50. 

The table of difference is 
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 (a) To find tan (0.12), we have 0.12 = 0.10 + 𝑝(0.05), which gives 𝑝 = 0.4. Hence, 

equation(2) gives 

 

tan (0.12) =0.1003 + 0.4(0.0508) +
0.4(0.4−1)

2
(0.0008)

 +
0.4(0.4−1)(0.4−2)

6
(0.0002)

 +
0.4(0.4−1)(0.4−2)(0.4−3)

24
(0.0002)

=0.1205.

 

 (b) To find tan (0.26), we have 0.26 = 0.30 + 𝑝(0.05), which gives 𝑝 = −0.8. Hence, 

Equation (6) gives 

 

tan (0.26) =0.3093 − 0.8(0.0540) +
−0.8(−0.8+1)

2
(0.0014)

 +
−0.8(−0.8+1)(−0.8+2)

6
(0.0004)

 +
−0.8(−0.8+1)(−0.8+2)(−0.8+3)

24
(0.0002)

=0.2662

 

 Proceeding as in the case (i) above, we obtain 

(c) tan (0.40) = 0.4241, and 

(d) tan (0.50) = 0.5543. 

 The actual values, correct to four decimal places, of tan (0.12), tan (0.26), tan (0.40) and 

tan (0.50) are respectively 0.1206,0.2660,0.4228 and 0.5463. Comparison of the 

computed and actual values shows that in the first-two cases (i.e. of interpolation) the 

results obtained are fairly accurate whereas in the last-two cases (i.e. of extrapolation) the 

errors are quite considerable. The example therefore demonstrates the important result that 

if a tabulated function is other than a polynomial, then extrapolation very far from the table 

limits would be dangerous-although interpolation can be carried out very accurately. 
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 2.2. Central Difference Interpolation Formulae: 

 In the preceding section, we derived and discussed Newton's forward and backward 

interpolation formulae, which are applicable for interpolation near the beginning and end 

respectively, of tabulated values. We shall, in the present section, discuss the central 

difference formulae which are most suited for interpolation near the middle of a tabulated 

set. The central difference operator 𝛿 was already introduced in Section 1.3.3. 

 The most important central difference formulae are those due to Stirling, Bessel and 

Everett. These will be discussed in Sections 2.2.2, 2.2.3 and 2.2.4, respectively. Gauss's 

formulae, introduced in Section 2.2.1 below, are of interest from a theoretical stand-point 

only. 

 2.2.1. Gauss' Central Difference Formulae: 

 In this section, we will discuss Gauss' forward and backward formulae. 

 Gauss' forward formula 

 We consider the following difference table in which the central ordinate is taken for 

convenience as 𝑦0 corresponding to 𝑥 = 𝑥0. 

 The differences used in this formula lie on the line shown in Table 3.6. The formula is, 

therefore, of the form 

  𝑦𝑝 = 𝑦0 + 𝐺1Δ𝑦0 + 𝐺2Δ
2𝑦−1 + 𝐺3Δ

3𝑦−1 + 𝐺4Δ
4𝑦−2 +⋯ ………..(1) 

 where 𝐺1, 𝐺2, … have to be determined. The 𝑦𝑝 on the left side can be expressed in terms 

of 𝑦0, Δ𝑦0 and higher-order differences of 𝑦0, as follows: 

 Table 2.1. Gauss' Forward Formula 

  

 Clearly,

𝑦𝑝 = 𝐸
𝑝𝑦0

 = (1 + Δ)𝑝𝑦0, using relation equation(1) 

 = 𝑦0 + 𝑝Δ𝑦0 +
𝑝(𝑝−1)

2!
Δ2𝑦0 +

𝑝(𝑝−1)(𝑝−2)

3!
Δ3𝑦0 +⋯
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 Similarly, the right side of Equation (1) can also be expressed in terms of 𝑦0, Δ𝑦0 and 

higher-order differences. We have 

 

Δ2𝑦−1 = Δ
2𝐸−1𝑦0

 = Δ2(1 + Δ)−1𝑦0
 = Δ2(1 − Δ + Δ2 − Δ3 +⋯)𝑦0
 = Δ2(𝑦0 − Δ𝑦0 + Δ

2𝑦0 − Δ
3𝑦0 +⋯)

 = Δ2𝑦0 − Δ
3𝑦0 + Δ

4𝑦0 − Δ
5𝑦0 +⋯

 

 

Δ3𝑦−1 = Δ
3𝑦0 − Δ

4𝑦0 + Δ
5𝑦0 − Δ

6𝑦0 +⋯

Δ4𝑦−2 = Δ
4𝐸−2𝑦0

 = Δ4(1 + Δ)−2𝑦0
 = Δ4(𝑦0 − 2Δ𝑦0 + 3Δ

2𝑦0 − 4Δ
3𝑦0 +⋯)

 = Δ4𝑦0 − 2Δ
5𝑦0 + 3Δ

6𝑦0 − 4Δ
7𝑦0 +⋯

 

 Hence Equation (1) gives the identity 

 

𝑦0 + 𝑝Δ𝑦0 +
𝑝(𝑝−1)

2!
Δ2𝑦0 +

𝑝(𝑝−1)(𝑝−2)

3!
Δ3𝑦0

 +
𝑝(𝑝−1)(𝑝−2)(𝑝−3)

4!
Δ4𝑦0 +⋯

=𝑦0 + 𝐺1Δ𝑦0 + 𝐺2(Δ
2𝑦0 − Δ

3𝑦0 + Δ
4𝑦0 − Δ

5𝑦0 +⋯)

 +𝐺3(Δ
3𝑦0 − Δ

4𝑦0 + Δ
5𝑦0 − Δ

6𝑦0 +⋯)

 

                    +𝐺4(Δ
4𝑦0 − 2Δ

5𝑦0 + 3Δ
6𝑦0 − 4Δ

7𝑦0 +⋯) ………(2) 

 Equating the coefficients of Δ𝑦0, Δ
2𝑦0, Δ

3𝑦0, etc., on both sides of equation (2), we 

obtain 

 

𝐺1 = 𝑝

𝐺2 =
𝑝(𝑝−1)

2!
 , 𝐺3 =

(𝑝+1)𝑝(𝑝−1)

3!
 

𝐺4 =
(𝑝+1)𝑝(𝑝−1)(𝑝−2)

4!

    …………. (3) 

 Gauss' backward formula 

 This formula uses the differences which lie on the line shown in Table 2.2. 

 Table 2.2 Gauss' Backward Formula 

  

 Gauss' backward formula can therefore be assumed to be of the form 

 𝑦𝑝 = 𝑦0 + 𝐺1
′Δ𝑦−1 + 𝐺2

′Δ2𝑦−1 + 𝐺3
′Δ3𝑦−2 + 𝐺4

′Δ4𝑦−2 +⋯(4)  
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 where 𝐺1
′ , 𝐺2

′ , … have to be determined. Following the same procedure as in Gauss' 

forward formula, we obtain 

 

𝐺1
′ = 𝑝

𝐺2
′ =

𝑝(𝑝+1)

2!
,

𝐺3
′ =

(𝑝+1)𝑝(𝑝−1)

3!

𝐺4
′ =

(𝑝+2)(𝑝+1)𝑝(𝑝−1)

4!

⋮ }
  
 

  
 

…………(5)  

 Example 1: 

 From the following table, find the value of 𝑒1.17 using Gauss' forward formula: 

𝑥 𝑒𝑥 

1.00 2.7183 

1.05 2.8577 

1.10 3.0042 

1.15 3.1582 

1.20 3.3201 

1.25 3.4903 

1.30 3.6693 

 We have 

 1.17 = 1.15 + 𝑝(0.05) 

 which gives 

 𝑝 =
0.02

0.05
=
1

4
. 

 The difference table is given below. 
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 Using formulae (1) and (3), we obtain 

 

𝑒1.17 =3.1582 +
2

5
(0.1619) +

(2/5)(2/5−1)

2
(0.0079)

 +
(2/5+1)(2/5)(2/5−1)

6
(0.0004)

=3.1582 + 0.0648 − 0.0009
=3.2221

 

 2.2.2 Stirling's Formula: 

 Taking the mean of Gauss' forward and backward formulae, we obtain 

 𝑦𝑝 =𝑦0 + 𝑝
Δ𝑦−1+Δ𝑦0

2
+
𝑝2

2
Δ2𝑦−1 +

𝑝(𝑝2−1)

3!

Δ3𝑦−1+Δ
3𝑦−2

2
    ……….(6) 

 Formula given in Equation (6) is called Stirling's formula. 

 2.3. Lagrange's Interpolation Formula: 

 Let 𝑦(𝑥) be continuous and differentiable (𝑛 + 1) times in the interval (𝑎, 𝑏). Given the 

(𝑛 + 1) points (𝑥0, 𝑦0), (𝑥1, 𝑦1), … , (𝑥𝑛 , 𝑦𝑛) where the values of 𝑥 need not necessarily 

be equally spaced, we wish to find a polynomial of degree 𝑛, say 𝐿𝑛(𝑥), such that 

 𝐿𝑛(𝑥𝑖) = 𝑦(𝑥𝑖) = 𝑦𝑖 , 𝑖 = 0,1,… , 𝑛 ……….(1) 

 Before deriving the general formula, we first consider a simpler case, viz., the equation 

of a straight line (a linear polynomial) passing through two points (𝑥0, 𝑦0) and (𝑥1, 𝑦1). 

Such a polynomial, say 𝐿1(𝑥), is easily seen to be 

 
𝐿1(𝑥) =

𝑥−𝑥1

𝑥0−𝑥1
𝑦0 +

𝑥−𝑥0

𝑥1−𝑥0
𝑦1

 = 𝑙0(𝑥)𝑦0 + 𝑙1(𝑥)𝑦1 = ∑  1
𝑖=0   𝑙𝑖(𝑥)𝑦𝑖………(2)

 

 where 𝑙0(𝑥) =
𝑥−𝑥1

𝑥0−𝑥1
  and  𝑙1(𝑥) =

𝑥−𝑥0

𝑥1−𝑥0
 ………..(3) 

 From Equation (1), it is seen that 

 𝑙0(𝑥0) = 1, 𝑙0(𝑥1) = 0, 𝑙1(𝑥0) = 0, 𝑙1(𝑥1) = 1. 

 These relations can be expressed in a more convenient form as  

 𝑙𝑖(𝑥𝑗) = {
1, if 𝑖 = 𝑗
0, if 𝑖 ≠ 𝑗

  …….. (4) 

 The 𝑙𝑖(𝑥) in Equation (2) also have the property  

 ∑  1
𝑖=0   𝑙𝑖(𝑥) = 𝑙0(𝑥) + 𝑙1(𝑥) =

𝑥−𝑥1

𝑥0−𝑥1
+

𝑥−𝑥0

𝑥1−𝑥0
= 1 ………(5) 

 Equation (2) is the Lagrange polynomial of degree one passing through two points (𝑥0, 𝑦0) 

and (𝑥1, 𝑦1). In a similar way, the Lagrange polynomial of degree two passing through 

three points (𝑥0, 𝑦0), (𝑥1, 𝑦1) and (𝑥2, 𝑦2) is written as 

 𝐿2(𝑥) = ∑  2
𝑖=0   𝑙𝑖(𝑥)𝑦𝑖  
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 where the 𝑙𝑖(𝑥) satisfy the conditions given in Equations. (4) and (5). 

To derive the general formula, let 𝐿𝑛(𝑥) = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥
2 +⋯+ 𝑎𝑛𝑥

𝑛  ………(6) 

 be the desired polynomial of the 𝑛th degree such that conditions given in Equation (1) 

(called the interpolatory conditions) are satisfied. Substituting these conditions in Eq. (6), 

we obtain the system of equations 

 

𝑦0 = 𝑎0 + 𝑎1𝑥0 + 𝑎2𝑥0
2 +⋯+ 𝑎𝑛𝑥0

𝑛

𝑦1 = 𝑎0 + 𝑎1𝑥1 + 𝑎2𝑥1
2 +⋯+ 𝑎𝑛𝑥1

𝑛

𝑦2 = 𝑎0 + 𝑎1𝑥2 + 𝑎2𝑥2
2 +⋯+ 𝑎𝑛𝑥2

𝑛

⋮
𝑦𝑛 = 𝑎0 + 𝑎1𝑥𝑛 + 𝑎2𝑥𝑛

2 +⋯+ 𝑎𝑛𝑥𝑛
𝑛}
 
 

 
 

  ………(7) 

 The set of Equations. (7) will have a solution if ||

1 𝑥0 𝑥0
2 ⋯ 𝑥0

𝑛

1 𝑥1 𝑥1
2 ⋯ 𝑥1

𝑛

⋮ ⋮ ⋮ ⋮
1 𝑥𝑛 𝑥𝑛

2 ⋯ 𝑥𝑛
𝑛

|| ≠ 0   ……….(8) 

 The value of this determinant, called Vandermonde's determinant, is 

 (𝑥0 − 𝑥1)(𝑥0 − 𝑥2)… (𝑥0 − 𝑥𝑛)(𝑥1 − 𝑥2)… (𝑥1 − 𝑥𝑛)…(𝑥𝑛−1 − 𝑥𝑛). 

 Eliminating 𝑎0, 𝑎1, … , 𝑎𝑛 from Equations. (6) and (7), we obtain 

 
|

|

𝐿𝑛(𝑥) 1 𝑥 𝑥2 ⋯ 𝑥𝑛

𝑦0 1 𝑥0 𝑥0
2 ⋯ 𝑥0

𝑛

𝑦1 1 𝑥1 𝑥1
2 ⋯ 𝑥1

𝑛

⋮ ⋮ ⋮ ⋮ ⋮
𝑦𝑛 1 𝑥𝑛 𝑥𝑛

2 ⋯ 𝑥𝑛
𝑛

|

|
= 0   ………..(9) 

 which shows that 𝐿𝑛(𝑥) is a linear combination of 𝑦0, 𝑦1, 𝑦2, … , 𝑦𝑛. Hence we write  

 𝐿𝑛(𝑥) = ∑  𝑛
𝑖=0   𝑙𝑖(𝑥)𝑦𝑖   ………..(10) 

 where 𝑙𝑖(𝑥) are polynomials in 𝑥 of degree 𝑛. Since 𝐿𝑛(𝑥𝑗) = 𝑦𝑗 for 𝑗 = 0,1, 2, … , 𝑛, 

Equation (5) gives 

 
𝑙𝑖(𝑥𝑗) = 0  if  𝑖 ≠ 𝑗

𝑙𝑗(𝑥𝑗) = 1  for all 𝑗
} 

 which are the same as Equation(4). Hence 𝑙𝑖(𝑥) may be written as 

  𝑙𝑖(𝑥) =
(𝑥−𝑥0)(𝑥−𝑥1)…(𝑥−𝑥𝑖−1)(𝑥−𝑥𝑖+1)…(𝑥−𝑥𝑛)

(𝑥𝑖−𝑥0)(𝑥𝑖−𝑥1)…(𝑥𝑖−𝑥𝑖−1)(𝑥𝑖−𝑥𝑖+1)…(𝑥𝑖−𝑥𝑛)
  ………(11) 

 which obviously satisfies the conditions (4). 

If we now set 

  Π𝑛+1(𝑥) = (𝑥 − 𝑥0)(𝑥 − 𝑥1)… (𝑥 − 𝑥𝑖−1)(𝑥 − 𝑥𝑖)(𝑥 − 𝑥𝑖+1)… (𝑥 − 𝑥𝑛)  ……….(12) 

 then 
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 Π𝑛+1
′ (𝑥𝑖) =

𝑑

𝑑𝑥
[Π𝑛+1(𝑥)]𝑋=𝑥𝑖  

 so that Equation (11) becomes 𝑙𝑖(𝑥) =
Π𝑛+1(𝑥)

(𝑥−𝑥𝑖)Π𝑛+1
′ (𝑥𝑖)

   …………. (13) 

 Hence Equation (10) gives 𝐿𝑛(𝑥) = ∑  𝑛
𝑖=0  

Π𝑛+1(𝑥)

(𝑥−𝑥𝑖)Π𝑛+1
′ (𝑥𝑖)

𝑦𝑖    ……….. (14) 

 which is called Lagrange's interpolation formula. The coefficients 𝑙𝑖(𝑥), defined in Eq. 

(11), are called Lagrange interpolation coefficients. Interchanging 𝑥 and 𝑦 in Equation 

(14), we obtain the formula 𝐿𝑛(𝑦) = ∑  𝑛
𝑖=0  

Π𝑛+1(𝑦)

(𝑦−𝑦𝑖)Π𝑛+1
′ (𝑦𝑖)

𝑥𝑖 ………. (15) 

 which is useful for inverse interpolation. 

It is trivial to show that the Lagrange interpolating polynomial is unique. To prove this, 

we assume the contrary. Let 𝐿‾𝑛(𝑥) be a polynomial, distinct from 𝐿𝑛(𝑥), of degree not 

exceeding 𝑛 and such that  

 𝐿‾𝑛(𝑥𝑖) = 𝑦𝑖 , 𝑖 = 0,1,2,… , 𝑛 

 Then the polynomial defined by 𝑀(𝑥), where 

 𝑀(𝑥) = 𝐿𝑛(𝑥) − 𝐿‾𝑛(𝑥) 

 vanishes at the (𝑛 + 1) points 𝑥𝑖, 𝑖 = 0,1,… , 𝑛. Hence we have 

 𝑀𝑛(𝑥) ≡ 0, 

 which shows that 𝐿𝑛(𝑥) and 𝐿‾𝑛(𝑥) are identical. 

A major advantage of this formula is that the coefficients in Equation (15) are easily 

determined. Further, it is more general in that it is applicable to either equal or unequal 

intervals and the abscissae 𝑥0, 𝑥1, … , 𝑥𝑛 need not be in order. Using this formula it is, 

however, inconvenient to pass from one interpolation polynomial to another of degree 

one greater. 

 The following examples illustrate the use of Lagrange's formula. 

Example 1: 

 Certain corresponding values of 𝑥 and log10 𝑥 are 

(300,2.4771), (304,2.4829), (305,2.4843) and (307,2.4871). Find log10 301. 

 From formula given in Eq. (14), we obtain 

 

log10 301 =
(−3)(−4)(−6)

(−4)(−5)(−7)
(2.4771) +

(1)(−4)(−6)

(4)(−1)(−3)
(2.4829)

 +
(1)(−3)(−6)

(5)(1)(−2)
(2.4843) +

(1)(−3)(−4)

(7)(3)(2)
(2.4871)

=1.2739 + 4.9658 − 4.4717 + 0.7106
=2.4786.
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 Example 2: 

 If 𝑦1 = 4, 𝑦3 = 12, 𝑦4 = 19 and 𝑦𝑥 = 7, find 𝑥. 

Using Equation (15), we have 

 

𝑥 =
(−5)(−12)

(−8)(−15)
(1) +

(3)(−12)

(8)(−7)
(3) +

(3)(−5)

(15)(7)
(4)

 =
1

2
+
27

14
−
4

7

 = 1.86.

 

 The actual value is 2.0 since the above values were obtained from the polynomial 

 𝑦(𝑥) = 𝑥2 + 3. 

 Example 3:  

 Find the Lagrange interpolating polynomial of degree 2 approximating the function 𝑦 =

ln 𝑥 defined by the following table of values. Hence determine the value of ln 2.7. 

𝑥 𝑦 = ln 𝑥 

2 0.69315 

2.5 0.91629 

3.0 1.09861 

 We have 

 𝑙0(𝑥) =
(𝑥−2.5)(𝑥−3.0)

(−0.5)(−1.0)
= 2𝑥2 − 11𝑥 + 15 

 Similarly, we find 

 𝑙1(𝑥) = −(4𝑥
2 − 20𝑥 + 24)  and  𝑙2(𝑥) = 2𝑥

2 − 9𝑥 + 10. 

 Hence 

 

𝐿2(𝑥) =(2𝑥
2 − 11𝑥 + 15)(0.69315) − (4𝑥2 − 20𝑥 + 24)(0.91629)

 +(2𝑥2 − 9𝑥 + 10)(1.09861)

= −0.08164𝑥2 + 0.81366𝑥 − 0.60761,

 

 which is the required quadratic polynomial. 

Putting 𝑥 = 2.7, in the above polynomial, we obtain 

ln 2.7 ≈ 𝐿2(2.7) = −0.08164(2.7)
2 + 0.81366(2.7) − 0.60761 = 0.9941164. 

Actual value of ln 2.7 = 0.9932518, so that 

 ∣  Error ∣= 0.0008646. 

 Example 4: 

 The function 𝑦 = sin 𝑥 is tabulated below 
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𝑥 𝑦 = sin 𝑥 

0 0 

𝜋/4 0.70711 

𝜋/2 1.0 

 Using Lagrange's interpolation formula, find the value of sin (𝜋/6). 

We have 

 

sin 
𝜋

6
 ≈

(𝜋/6−0)(𝜋/6−𝜋/2)

(𝜋/4−0)(𝜋/4−𝜋/2)
(0.70711) +

(𝜋/6−0)(𝜋/6−𝜋/4)

(𝜋/2−0)(𝜋/2−𝜋/4)
(1)

 =
8

9
(0.70711) −

1

9

 =
4.65688

9

 = 0.51743

 

 Example 5: 

 Using Lagrange's interpolation formula, find the form of the function 𝑦(𝑥) from the 

following table 

𝑥 𝑦 

0 -12 

1 0 

3 12 

4 24 

  

 Since 𝑦 = 0 when 𝑥 = 1, it follows that 𝑥 − 1 is a factor. Let 𝑦(𝑥) = (𝑥 − 1)𝑅(𝑥). 

Then 𝑅(𝑥) = 𝑦/(𝑥 − 1). We now tabulate the values of 𝑥 and 𝑅(𝑥). 

𝑥 𝑅(𝑥) 

0 12 

3 6 

4 8 

  

 Applying Lagrange's formula to the above table, we find 
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𝑅(𝑥) =
(𝑥−3)(𝑥−4)

(−3)(−4)
(12) +

(𝑥−0)(𝑥−4)

(3−0)(3−4)
(6) +

(𝑥−0)(𝑥−3)

(4−0)(4−3)
(8)

 = (𝑥 − 3)(𝑥 − 4) − 2𝑥(𝑥 − 4) + 2𝑥(𝑥 − 3)

 = 𝑥2 − 5𝑥 + 12.

 

 Hence the required polynomial approximation to 𝑦(𝑥) is given by 

 𝑦(𝑥) = (𝑥 − 1)(𝑥2 − 5𝑥 + 12) 

 2.3.1. Error in Lagrange's Interpolation Formula: 

 Equation (3.7) can be used to estimate the error of the Lagrange interpolation formula for 

the class of functions which have continuous derivatives of order up to (𝑛 + 1) on [𝑎, 𝑏]. 

We, therefore, have 

  𝑦(𝑥) − 𝐿𝑛(𝑥) = 𝑅𝑛(𝑥) =
Π𝑛+1(𝑥)

(𝑛+1)!
𝑦(𝑛+1)(𝜉), 𝑎 < 𝜉 < 𝑏   ……….. (1) 

 and the quantity 𝐸𝐿 , where 𝐸𝐿 = max
[𝑎,𝑏]

 |𝑅𝑛(𝑥)| ……… (2) 

 may be taken as an estimate of error. Further, if we assume that 

  |𝑦(𝑛+1)(𝜉)| ≤ 𝑀𝑛+1, 𝑎 ≤ 𝜉 ≤ 𝑏 ………..(3) 

 then 𝐸𝐿 ≤
𝑀𝑛+1

(𝑛+1)![𝑎,𝑏]
max|Π𝑛+1(𝑥)|   …………(4) 

 The following examples illustrate the computation of the error. 

Example 1: 

 Estimate the error in the value of 𝑦 obtained in Example 3.15. 

Since 𝑦 = ln 𝑥, we obtain 𝑦′ = 1/𝑥, 𝑦′′ = −1/𝑥2 and 𝑦′′′ = 2/𝑥3. It follows that 

𝑦′′′(𝜉) = 2/𝜉3. Thus the continuity conditions on 𝑦(𝑥) and its derivatives are satisfied in 

[2,3]. Hence 𝑅𝑛(𝑥) =
(𝑥−2)(𝑥−2.5)(𝑥−3)

6

2

𝜉3
, 2 < 𝜉 < 3 But |

1

𝜉3
| <

1

23
=
1

8
 

 When 𝑥 = 2.7, we therefore obtain 

 |𝑅𝑛(𝑥)| ≤ |
(2.7−2)(2.7−2.5)(2.7−3)

6

2

8
| =

0.7×0.2×0.3

3×8
= 0.00175 

 which agrees with the actual error given in Example 3.15. 

Example 2:  

 Estimate the error in the solution computed in Example 3.16. 

Since 𝑦(𝑥) = sin 𝑥, we have 

 𝑦′(𝑥) = cos 𝑥, 𝑦′′(𝑥) = −sin 𝑥, 𝑦′′′(𝑥) = −cos 𝑥 

 Hence |𝑦′′′(𝜉)| < 1. 

When 𝑥 = 𝜋/6. 

 |𝑅𝑛(𝑥)| ≤ |
(𝜋/6−0)(𝜋/6−𝜋/4)(𝜋/6−𝜋/2)

6
| =

1

6

𝜋

6

𝜋

12

𝜋

3
= 0.02392 
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 which agrees with the actual error in the solution obtained in Example 3.16. 

 2.4. Divided differences and their properties: 

 The Lagrange interpolation formula, derived in Section 3.9.1, has the disadvantage that if 

another interpolation point were added, then the interpolation coefficients 𝑙𝑖(𝑥) will have 

to be recomputed. We therefore seek an interpolation polynomial which has the property 

that a polynomial of higher degree may be derived from it by simply adding new terms. 

Newton's general interpolation formula is one such formula and it employs what are called 

divided differences. It is our principal purpose in this section to define such differences 

and discuss certain of their properties to obtain the basic formula due to Newton. 

 Let (𝑥0, 𝑦0), (𝑥1, 𝑦1),… , (𝑥𝑛, 𝑦𝑛) be the given (𝑛 + 1) points. Then the divided 

differences of order 1,2,… , 𝑛 are defined by the relations: 

 

[𝑥0, 𝑥1] =
𝑦1−𝑦0

𝑥1−𝑥0
,

[𝑥0, 𝑥1, 𝑥2] =
[𝑥1,𝑥2]−[𝑥0,𝑥1]

𝑥2−𝑥0
,

⋮

[𝑥0, 𝑥1, … , 𝑥𝑛] =
[𝑥1,𝑥2,…,𝑥𝑛]−[𝑥0,𝑥1,…,𝑥𝑛−1]

𝑥𝑛−𝑥0
.}
 
 

 
 

……… . . (1) 

 Even if the arguments are equal, the divided differences may still have a meaning. We 

then set 𝑥1 = 𝑥0 + 𝜀 so that 

 

[𝑥0, 𝑥1] = lim
𝜀→0
 [𝑥0, 𝑥0 + 𝜀]

 = lim
𝜀→0
 
𝑦(𝑥0+𝜀)−𝑦(𝑥0)

𝜀

 = 𝑦′(𝑥0),  if 𝑦(𝑥) is differentiable. 

 

 Similarly, [𝑥0, 𝑥0, … , 𝑥0]⏟        
(𝑟+1) arguments 

=
𝑦𝑟(𝑥0)

𝑟!
   ……….(2) 

 From Equation (2), it is easy to see that 

 [𝑥0, 𝑥1] =
𝑦0

𝑥0−𝑥1
+

𝑦1

𝑥1−𝑥0
= [𝑥1, 𝑥0]. 

 Again, 

 

[𝑥0, 𝑥1, 𝑥2] =
1

𝑥2−𝑥0
(
𝑦2−𝑦1

𝑥2−𝑥1
−
𝑦1−𝑦0

𝑥1−𝑥0
)

=
1

𝑥2−𝑥0
[

𝑦2

𝑥2−𝑥1
− 𝑦1 (

1

𝑥2−𝑥1
+

1

𝑥1−𝑥0
) +

𝑦0

𝑥1−𝑥0
]

=
𝑦0

(𝑥0−𝑥1)(𝑥0−𝑥2)
+

𝑦1

(𝑥1−𝑥0)(𝑥1−𝑥2)
+

𝑦2

(𝑥2−𝑥0)(𝑥2−𝑥1)
 …………(3)

 

 Similarly it can be shown that 

 [𝑥0, 𝑥1, … , 𝑥𝑛] =
𝑦0

(𝑥0−𝑥1)…(𝑥0−𝑥𝑛)
+

𝑦1

(𝑥1−𝑥0)…(𝑥1−𝑥𝑛)
+⋯ 𝑦n

(𝑥𝑛−𝑥0)(𝑥𝑛−𝑥n−1)
 ……..(4) 
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 Hence the divided differences are symmetrical in their arguments. 

Now let the arguments be equally spaced so that 𝑥1 − 𝑥0 = 𝑥2 − 𝑥1 = ⋯ = 𝑥𝑛 − 𝑥𝑛−1 =

ℎ. Then we obtain [𝑥0, 𝑥1] =
𝑦1−𝑦0

𝑥1−𝑥0
=

1

ℎ
Δ𝑦0 ……..(5) 

 [𝑥0, 𝑥1, 𝑥2] =
[𝑥1,𝑥2]−[𝑥0,𝑥1]

𝑥2−𝑥0
=

1

2ℎ
(
Δ𝑦1

ℎ
−
Δ𝑦0

ℎ
) =

1

2ℎ2
Δ2𝑦0 =

1

ℎ22!
Δ2𝑦0 ……..(6) 

 and in general, [𝑥0, 𝑥1, … , 𝑥𝑛] =
1

ℎ𝑛𝑛!
Δ𝑛𝑦0  ……..(7) 

 If the tabulated function is a polynomial of 𝑛th degree, then Δ𝑛𝑦0 would be a constant 

and hence the 𝑛th divided difference would also be a constant. 

 For the set of values (𝑥𝑖, 𝑦𝑖), 𝑖 = 0,1,2,… , 𝑛, divided differences can be generated by the 

following statements. 

 Define y (xj) = yj = DD (0, j), j = 0, 1, 2, .., n 

Do i = 1(1)n 

Do j = O(1)(n-i) 

DD(i, j) =
𝐷𝐷(𝑖−1,𝑗+1)−𝐷𝐷(𝑖−1,𝑗)

𝑋(𝑖+𝑗)−𝑋(𝑗)
  

 Next j 

Next i 

 2.5. Newton's General Interpolation Formula: 

 By definition, we have 

 [𝑥, 𝑥0] =
𝑦−𝑦0

𝑥−𝑥0
 

 so that 𝑦 = 𝑦0 + (𝑥 − 𝑥0)[𝑥, 𝑥0]  ………. (1) 

 Again 

 [𝑥, 𝑥0, 𝑥1] =
[𝑥,𝑥0]−[𝑥0,𝑥1]

𝑥−𝑥1
 

 which gives 

 [𝑥, 𝑥0] = [𝑥0, 𝑥1] + (𝑥 − 𝑥1)[𝑥, 𝑥0, 𝑥1] 

 Substituting this value of [𝑥, 𝑥0] in Equation (1), we obtain 

 𝑦 = 𝑦0 + (𝑥 − 𝑥0)[𝑥0, 𝑥1] + (𝑥 − 𝑥0)(𝑥 − 𝑥1)[𝑥, 𝑥0, 𝑥1]   ……….(2) 

 But 

 [𝑥, 𝑥0, 𝑥1, 𝑥2] =
[𝑥,𝑥0,𝑥1]−[𝑥0,𝑥1,𝑥2]

𝑥−𝑥2
   

 and so [𝑥, 𝑥0, 𝑥1] = [𝑥0, 𝑥1, 𝑥2] + (𝑥 − 𝑥2)[𝑥, 𝑥0, 𝑥1, 𝑥2]  ………….(3) 

 Equation (2) now gives 
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 𝑦 =𝑦0 + (𝑥 − 𝑥0)[𝑥0, 𝑥1] + (𝑥 − 𝑥0)(𝑥 − 𝑥1)[𝑥0, 𝑥1, 𝑥2] 

      +(𝑥 − 𝑥0)(𝑥 − 𝑥1)(𝑥 − 𝑥2)[𝑥, 𝑥0, 𝑥1, 𝑥2]   …………(4) 

 Proceeding in this way, we obtain 

 
𝑦 =𝑦0 + (𝑥 − 𝑥0)[𝑥0, 𝑥1] + (𝑥 − 𝑥0)(𝑥 − 𝑥1)[𝑥0, 𝑥1, 𝑥2]

 +(𝑥 − 𝑥0)(𝑥 − 𝑥1)(𝑥 − 𝑥2)[𝑥0, 𝑥1, 𝑥2, 𝑥3] + ⋯
 

         +(𝑥 − 𝑥0)(𝑥 − 𝑥1)(𝑥 − 𝑥2)…… . (𝑥 − 𝑥n)[𝑥0, 𝑥1, 𝑥2, 𝑥3…… . . 𝑥n]   ………(5) 

 This formula is called Newton's general interpolation formula with divided differences, 

the last term being the remainder term after ( 𝑛 + 1 ) terms. 

 After generating the divided differences, interpolation can be carried out by the following 

statements. 

 Let 𝑦𝑘  be required corresponding to the value 𝑥 = 𝑥𝑘. Then 

 𝑦k = 𝑦0 

factor = 1.0 

Do i = 0(1) (n-1) 

factor = factor * (𝑥𝑘 − 𝑥𝑖) 

 𝑌𝑘 = 𝑌𝑘 + factor * DD (i+1,0) 

 Next i 

End 

 Example 1: 

 As our first example to illustrate the use of Newton's divided difference formula, we 

consider the data of (Example 1 of section 2.3). 

 The divided difference table is 

𝑥 log10 𝑥   

300 2.4771 0.00145  

304 2.4829 0.00140 0.00001 

305 2.4843 0.00140 0 

307 2.4871   

  

 Hence Equation (5) gives 

 log10 301 = 2.4771 + 0.00145+ (−3)(−0.00001) = 2.4786, as before . 
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 It is clear that the arithmetic in this method is much simpler when compared to that in 

Lagrange's method. 

 Example 2: 

 Using the following table find 𝑓(𝑥) as a polynomial in 𝑥. 

𝑥 𝑓(𝑥) 

-1 3 

0 -6 

3 39 

6 822 

7 1611 

 The divided difference table is 

𝑥 𝑓(𝑥)     

-1 3 -9 6 5 1 

0 -6 15 41 13  

3 39 261 132   

7 822 789    

  

 Hence Equation (5) gives 

 
𝑓(𝑥) = 3 + (𝑥 + 1)(−9) + 𝑥(𝑥 + 1)(6) + 𝑥(𝑥 + 1)(𝑥 − 3)(5) + 𝑥(𝑥 + 1)(𝑥 − 3)(𝑥 − 6)

 = 𝑥4 − 3𝑥3 + 5𝑥2 − 6
 

 EXERCISES: 

 1. Prove that (a) Δ = 𝜇𝛿 +
𝛿2

2
 

                      (b) Δ3𝑦2 = ∇
3𝑦5 

2 .From the table of cubes given below, find (6.36)3 and (6.61)3. 

𝑥 6.1 6.2 6.3 6.4 6.5 6.6 6.7 

𝑥3 226.981 238.328 250.047 262.144 274.625 287.496 300.763 
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3. Define the operators Δ, ∇, 𝛿, 𝐸 and 𝐸−1 and show that 

(a) Δ𝑟𝑦𝑘 = ∇
𝑟𝑦𝑘+𝑟 = 𝛿

𝑟𝑦𝑘+𝑟
2
 

(b) Δ∇𝑦𝑘 = ∇Δ𝑦𝑘 = 𝛿
2𝑦𝑘  

(c) 𝜇𝛿 =
Δ+∇

2
 

(d) 1 + 𝜇2𝛿2 = (1 +
1

2
𝛿2)

2

 

(e) Δ2 = (1 + Δ)𝛿2 

(f) Δ (
1

𝑦𝑘
) = −

Δ𝑦𝑘

𝑦𝑘𝑦𝑘+1
. 

 4. Show that 

 (Δ −
1

2
𝛿2) = 𝛿 (1 +

𝛿2

4
)
1/2

 

 5.Find the missing terms in the following: 

𝑥 0 5 10 15 20 25 30 

𝑦 1 3 ? 73 225 ? 1153 

  

 6.Derive expressions for the errors in Newton's formulae of forward and backward 

differences. Estimate the maximum error made in any value of sin 𝑥 in Example 3.6 

obtained by interpolation in the range 15∘ ≤ 𝑥 ≤ 40∘. 

7. Certain values of 𝑥 and 𝑓(𝑥) are given below. Find 𝑓(1.235). 

𝑥 1.00 1.05 1.10 1.15 1.20 1.25 

𝑓(𝑥) 0.682689 0.706282 0.728668 0.749856 0.769861 0.788700 

  

 8. Prove the following relations: 

(a) 𝛿2𝐸 = Δ2 

(b) 𝐸−1/2 = 𝜇 −
𝛿

2
 

(c) ∇= 𝛿𝐸−1/2 

(d) Δ − ∇= 𝛿2 

(e) 𝜇 = cosh 
ℎ𝐷

2
. 

9. Using Gauss's forward formula, find the value of 𝑓(32) given that 𝑓(25) =
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0.2707, 𝑓(30) = 0.3027, 𝑓(35) = 0.3386 and 𝑓(40) = 0.3794. 

10. State Gauss's backward formula and use it to find the value of √12525, given that 

√12500 = 111.8034, √12510 = 111.8481, √12520 = 111.8928, √12530 =

111.9375 and √12540 = 111.9822. 

11.State Stirling's formula for interpolation at the middle of a table of values and find        

       𝑒1.91 from the following table: 

𝑥 1.7 1.8 1.9 2.0 2.1 2.2 

𝑒𝑥 5.4739 6.0496 6.6859 7.3891 8.1662 9.0250 

  

 12. Using Stirling's formula, find cos (0.17), given that cos (0) = 1, cos (0.05) =

0.9988, cos (0.10) = 0.9950, cos (0.15) = 0.9888, cos (0.20) = 0.9801, cos (0.25) =

0.9689, and cos (0.30) = 0.9553. 

13. State Lagrange's interpolation formula and find a bound for the error in linear   

        interpolation. 

14. Write an algorithm for Lagrange's formula. Find the polynomial which fits the     

        following data (−1,7), (1,5) and (2,15) 

 15.Find 𝑦(2) from the following data using Lagrange's formula 

𝑥 0 1 3 4 5 

𝑦 0 1 81 256 625 

  

 16. Let the values of the function 𝑦 = sin 𝑥 be tabulated at the abscissae 0, 𝜋/4 and 𝜋/2. 

If the Lagrange polynomial 𝐿2(𝑥) is fitted to this data, find a bound for the error in the 

interpolated value. 

17. Establish Newton's divided-difference interpolation formula and give an estimate of 

the remainder term. Deduce Newton's forward and backward difference interpolation 

formulae as particular cases. 
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Unit III 

Numerical Differentiation and Integration: Derivatives using Newton’s forward difference 

formula–Derivatives using Newton’s backward difference formula – Derivatives using central 

difference formula – Maxima and Minima of the Interpolating polynomial–Numerical 

Integration.  

Chapter 3: Sections - 3.1 to 3.5 

3.1. Introduction: 

In Chapter 3, we were concerned with the general problem of interpolation, viz., given the set 

of values (𝑥0, 𝑦0), (𝑥1, 𝑦1),… , (𝑥𝑛 , 𝑦𝑛) of 𝑥 and 𝑦, to find a polynomial 𝜙(𝑥) of the lowest 

degree such that 𝑦(𝑥) and 𝜙(𝑥) agree at the set of tabulated points. In the present chapter, we 

shall be concerned with the problems of numerical differentiation and integration. That is to 

say, given the set of values of 𝑥 and 𝑦, as above, we shall derive  

formulae to compute: 

(i) 
𝑑𝑦

𝑑𝑥
,
𝑑2𝑦

𝑑𝑥2
,⋯ for any value of 𝑥 in [𝑥0, 𝑥𝑛], and 

(ii) ∫  
𝑥𝑛

𝑥0
𝑦𝑑𝑥. 

3.2. Numerical Differentiation: 

The general method for deriving the numerical differentiation formulae is to differentiate the 

interpolating polynomial. We illustrate the derivation with Newton's forward difference 

formula only, the method of derivation being the same with regard to the other formulae. 

Consider Newton's forward difference formula: 

𝑦 = 𝑦0 + 𝑢Δ𝑦0 +
𝑢(𝑢−1)

2!
Δ2𝑦0 +

𝑢(𝑢−1)(𝑢−2)

3!
Δ3𝑦0 +⋯,  ……… (1) 

Where 𝑥 = 𝑥0 + 𝑢ℎ    …………. (2) 

Then 
𝑑𝑦

𝑑𝑥
=
𝑑𝑦

𝑑𝑢

𝑑𝑢

𝑑𝑥
=

1

ℎ
(Δ𝑦0 +

2𝑢−1

2
Δ2𝑦0 +

3𝑢2−6𝑢+2

6
Δ3𝑦0 +⋯)  ………… (3) 

This formula can be used for computing the value of 𝑑𝑦/𝑑𝑥 for non-tabular values of 𝑥. For 

tabular values of 𝑥, the formula takes a simpler form, for by setting 𝑥 = 𝑥0 we obtain 𝑢 = 0 

from Equation (2), and hence Equation (3) gives 

[
𝑑𝑦

𝑑𝑥
]
𝑥=𝑥0

=
1

ℎ
(Δ𝑦0 −

1

2
Δ2𝑦0 +

1

3
Δ3𝑦0 −

1

4
Δ4𝑦0 +⋯)    ………… (4) 

Differentiating Equation (3) once again, we obtain 

𝑑2𝑦

𝑑𝑥2
=

1

ℎ2
(Δ2𝑦0 +

6𝑢−6

6
Δ3𝑦0 +

12𝑢2−36𝑢+22

24
Δ4𝑦0 +⋯)  ………… (5) 
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from which we obtain [
𝑑2𝑦

𝑑𝑥2
]
𝑥=𝑥0

=
1

ℎ2
(Δ2𝑦0 − Δ

3𝑦0 +
11

12
Δ4𝑦0 +⋯)  ……….. (6) 

Formulae for computing higher derivatives may be obtained by successive differentiation. In 

a similar way, different formulae can be derived by starting with other interpolation formulae. 

Thus, 

(a) Newton's backward difference formula gives  

[
𝑑𝑦

𝑑𝑥
]
𝑥=𝑥𝑛

=
1

ℎ
(∇𝑦𝑛 +

1

2
∇2𝑦𝑛 +

1

3
∇3𝑦𝑛 +⋯)   …………. (7) 

and [
𝑑2𝑦

𝑑𝑥2
]
𝑥=𝑥𝑛

=
1

ℎ2
(∇2𝑦𝑛 + ∇

3𝑦𝑛 +
11

12
∇4𝑦𝑛 +

5

6
∇5𝑦𝑛 +⋯) ………… (8) 

(b) Stirling's formula gives  

[
𝑑𝑦

𝑑𝑥
]
𝑥=𝑥0

=
1

ℎ
(
Δ𝑦−1+Δ𝑦0

2
−
1

6

Δ3𝑦−2+Δ
3𝑦−1

2
+

1

30

Δ5𝑦−3+Δ
5𝑦−2

2
+⋯)  ………… (9) 

and [
𝑑2𝑦

𝑑𝑥2
]
𝑥=𝑥0

=
1

ℎ2
(Δ2𝑦−1 −

1

12
Δ4𝑦−2 +

1

90
Δ6𝑦−3 −⋯)  ………….. (10) 

If a derivative is required near the end of a table, one of the following formulae may be used 

to obtain better accuracy 

ℎ𝑦0
′ = (Δ −

1

2
Δ2 +

1

3
Δ3 −

1

4
Δ4 +

1

5
Δ5 −

1

6
Δ6 +⋯)𝑦0 (11)

= (Δ +
1

2
Δ2 −

1

6
Δ3 +

1

12
Δ4 −

1

20
Δ5 +

1

30
Δ6 −⋯)𝑦−1 (12)

ℎ2𝑦0
′′ = (Δ2 − Δ3 +

11

12
Δ4 −

5

6
Δ5 +

137

180
Δ6 −

7

10
Δ7 +

363

560
Δ8 −⋯) 𝑦0 (13)

= (Δ2 −
1

12
Δ4 +

1

12
Δ5 −

13

180
Δ6 +

11

180
Δ7 −

29

560
Δ8 +⋯)𝑦−1 (14)

ℎ𝑦𝑛
′ = (∇ +

1

2
∇2 +

1

3
∇3 +

1

4
∇4 +

1

5
∇5 +

1

6
∇6 +

1

7
∇7 +

1

8
∇8 +⋯) 𝑦𝑛 (15)

= (∇ −
1

2
∇2 −

1

6
∇3 −

1

12
∇4 −

1

20
∇5 −

1

30
∇6 −

1

42
∇7 −

1

56
∇8 −⋯)𝑦𝑛+1 (16)

ℎ2𝑦𝑛
′′ = (17)

= (∇2 + ∇3 +
11

12
∇4 +

5

6
∇5 +

137

180
∇6 +

7

10
∇7 +

363

560
∇8 +⋯)𝑦𝑛 (18)

= (∇2 −
1

12
∇4 −

1

12
∇5 −

13

180
∇6 −

11

180
∇7 −

29

560
∇8 −⋯)𝑦𝑛+1. (19)

 

For more details, the reader is referred to Interpolation and Allied Tables. The following 

examples illustrate the use of the formulae stated above. 

Example 1:  

From the following table of values of 𝑥 and 𝑦, obtain 𝑑𝑦/𝑑𝑥 and 𝑑2𝑦/𝑑𝑥2 for 𝑥 = 1.2 : 
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𝑥 𝑦  𝑥 𝑦 

1.0 2.7183  1.8 6.0496 

1.2 3.3201  2.0 7.3891 

1.4 4.0552  2.2 9.0250 

1.6 4.9530    

 

The difference table is 

 

Here 𝑥0 = 1.2, 𝑦0 = 3.3201 and ℎ = 0.2. Hence Equation (11) gives 

[
𝑑𝑦

𝑑𝑥
]
𝑥=1.2

 =
1

0.2
[0.7351 −

1

2
(0.1627) +

1

3
(0.0361) −

1

4
(0.0080) +

1

5
(0.0014)]

 = 3.3205

 

If we use formula (12), then we should use the differences diagonally downwards from 

0.6018 and this gives 

[
𝑑𝑦

𝑑𝑥
]
𝑥=1.2

 =
1

0.2
[0.6018+

1

2
(0.1333) −

1

6
(0.0294) +

1

12
(0.0067) −

1

20
(0.0013]

 = 3.3205, as before. 

 

Similarly, formula (13) gives 

[
𝑑2𝑦

𝑑𝑥2
]
𝑥=1.2

=
1

0.04
[0.1627 − 0.0361 +

11

12
(0.0080) −

5

6
(0.0014)] = 3.318 

Using formula (14), we obtain 
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[
𝑑2𝑦

𝑑𝑥2
]
𝑥=1.2

=
1

0.04
[0.1333 −

1

12
(0.0067) +

1

12
(0.0013)] = 3.32 

Example 2: 

Calculate the first and second derivatives of the function tabulated in the preceding example at 

the point 𝑥 = 2.2 and also 𝑑𝑦/𝑑𝑥 at 𝑥 = 2.0. 

Solution: 

We use the table of differences of Example 1. Here 𝑥𝑛 = 2.2, 𝑦𝑛 = 9.0250 and ℎ = 0.2. 

Hence formula (15) gives 

[
𝑑𝑦

𝑑𝑥
]
𝑥=2.2

 =
1

0.2
[1.6359 +

1

2
(0.2964) +

1

3
(0.0535) +

1

4
(0.0094) +

1

5
(0.0014)]

 = 9.0228.

[
𝑑2𝑦

𝑑𝑥2
]
𝑥=2.2

 =
1

0.04
[0.2964+ 0.0535 +

11

12
(0.0094) +

5

6
(0.0014)] = 8.992.

 

To find 𝑑𝑦/𝑑𝑥 at 𝑥 = 2.0, we can use either (6.15) or (6.16). Formula (6.15) gives 

[
𝑑𝑦

𝑑𝑥
]
𝑥=2.0

=
1

0.2
] [1.3395 +

1

2
(0.2429) +

1

3
(0.0441) +

1

4
(0.0080)) 

whereas from formula (6.16), we obtain 

[
𝑑𝑦

𝑑𝑥
]
𝑥=2.0

 =
1

0.2
[1.6359−

1

2
(0.2964) −

1

6
(0.0535) −

1

12
(0.0094) −

1

20
(0.0014)]

 = 7.3896

 

Example 3: 

Find 𝑑𝑦/𝑑𝑥 and 𝑑2𝑦/𝑑𝑥2 at 𝑥 = 1.6 for the tabulated function of Example 1. 

Choosing 𝑥0 = 1.6, formula (9) gives 

[
𝑑𝑦

𝑑𝑥
]
𝑥=1.6

 =
1

0.2
(
0.8978 + 1.0966

2
−
1

2

0.0361 + 0.0441

2
+
1

30

0.0013 + 0.0014

2
)

 = 4.9530

 

Similarly, formula (10) yields 

[
𝑑2𝑦

𝑑𝑥2
]
𝑥=1.6

=
1

0.04
[0.1988 −

1

12
(0.0080) +

1

90
(0.0001)] = 4.9525 

In the preceding examples, the tabulated function is 𝑒𝑥 and hence it is easy to see that the error 

is considerably more in the case of the second derivatives. This is due to the reason that 

although the tabulated function and its approximating polynomial would agree at the set of data 

points, their slopes at these points may vary considerably. Numerical differentiation, is, 
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therefore, an unsatisfactory process and should be used only in 'rare cases.' The next section 

will be devoted to a discussion of errors in the numerical differentiation formulae. 

3.2.1 Errors in Numerical Differentiation 

The numerical computation of derivatives involves two types of errors, viz. truncation errors 

and rounding errors. These are discussed below. 

The truncation error is caused by replacing the tabulated function by means of an interpolating 

polynomial. This error can usually be estimated by formula (7). As noted earlier, this formula 

is of theoretical interest only, since, in practical computations, we usually do not have any 

information about the derivative 𝑦(𝑛+1)(𝜉). However, the truncation error in any numerical 

differentiation formula can easily be estimated in the following manner. Suppose that the 

tabulated function is such that its differences of a certain order are small and that the tabulated 

function is well approximated by the polynomial. (This means that the tabulated function does 

not have any rapidly varying components.) We know that 2𝜀 is the total absolute error in the 

values of Δ𝑦𝑖 , 4𝜀 in the values of Δ2𝑦𝑖 , etc., where 𝜀 is the absolute error in the values of 𝑦𝑖. 

Consider now, for example, Stirling's formula (9). This can be written in the form  

[
𝑑𝑦

𝑑𝑥
]
𝑥=𝑥0

=
Δ𝑦−1+Δ𝑦0

2ℎ
+ 𝑇1 =

𝑦1−𝑦−1

2ℎ
+ 𝑇1,  ………… (19) 

where 𝑇1, the truncation error, is given by 

𝑇1 =
1

6ℎ
|
Δ3𝑦−2+Δ

3𝑦−1

2
|   ………..(20) 

Similarly, formula (10) can be written as [
𝑑2𝑦

𝑑𝑥2
]
𝑥=𝑥0

=
1

ℎ2
Δ2𝑦−1 + 𝑇2  ………..(21) 

Where 𝑇2 =
1

12ℎ2
|Δ4𝑦−2|  ………….(22) 

The rounding error, on the other hand, is inversely proportional to ℎ in the case of first 

derivatives, inversely proportional to ℎ2 in the case of second 

derivatives, and so on. Thus, rounding error increases as ℎ decreases. Considering again 

Stirling's formula in the form of Equation (19), the rounding error does not exceed 2𝜀/2ℎ =

𝜀/ℎ, where 𝜀 is the maximum error in the value of 𝑦𝑖. On the other hand, the formula 

[
𝑑𝑦

𝑑𝑥
]
𝑥=𝑥0

 =
Δ𝑦−1 + Δ𝑦0

2ℎ
−
Δ3𝑦−2 + Δ

3𝑦−1
12ℎ

+⋯ 

has the maximum rounding error 

18𝜀

12ℎ
=
3𝜀

2ℎ
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Finally, the formula [
𝑑2𝑦

𝑑𝑥2
]
𝑥=𝑥0

=
Δ2𝑦−1

ℎ2
+⋯ =

𝑦−1−2𝑦0+𝑦1

ℎ2
+⋯  ……..(24) 

has the maximum rounding error 4𝜀/ℎ2. It is clear that in the case of higher derivatives, the 

rounding error increases rather rapidly. 

Example 4:  

Assuming that the function values given in the table of Example 1 are correct to the accuracy 

given, estimate the errors in the values of 𝑑𝑦/𝑑𝑥 and 𝑑2𝑦/𝑑𝑥2 at 𝑥 = 1.6. 

Since the values are correct to 4D, it follows that 𝜀 < 0.00005 = 0.5 × 10−4. 

Value of 𝑑𝑦/𝑑𝑥 at 𝑥 = 1.6 : 

 Truncation error  =
1

6ℎ
|
Δ3𝑦−1 + Δ

3𝑦0
2

| ,  from equation (20) 

 =
1

6(0.2)

0.0361 + 0.0441

2

 = 0.03342

 

and 

 Rounding error  =
3𝜀

2ℎ
,  from (23) 

 =
3(0.5)10−4

0.4
 = 0.00038

 

Hence, 

 Total error = 0.03342 + 0.00038 = 0.0338 

Using Stirling's formula from Equation (19), with the first differences, we obtain 

(
𝑑𝑦

𝑑𝑥
)
𝑥=1.6

=
Δ𝑦−1 + Δ𝑦0

2ℎ
=
0.8978 + 1.0966

0.4
=
1.9944

0.4
= 4.9860. 

The exact value is 4.9530 so that the error in the above solution is (4.9860 4.9530),  

i.e., 0.0330, which agrees with the total error obtained above. 

Value of 𝑑2𝑦/𝑑𝑥2 at 𝑥 = 1.6 :  

Using Equation (24), we obtain 

[
𝑑2𝑦

𝑑𝑥2
]
𝑥=1.6

=
Δ2𝑦−1
ℎ2

=
0.1988

0.04
= 4.9700 

so that the error = 4.9700 − 4.9530 = 0.0170. 

Also, 

 Truncation error =
1

12ℎ2
|Δ4𝑦−2| =

1

12(0.04)
× 0.0080 = 0.01667 
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and 

 Rounding error =
4𝜀

ℎ2
=
4 × 0.5 × 10−4

0.04
= 0.0050 

Hence 

Total error in [
𝑑2𝑦

𝑑𝑥2
]
𝑥=1.6

= 0.0167+ 0.0050 = 0.0217. 

3.2.2. Cubic Spline Method: 

The following examples illustrate the use of the spline formulae in numerical differentiation. 

Example 5: 

We consider the function 𝑦(𝑥) = sin 𝑥 in [0,𝜋]. 

Here 𝑀0 = 𝑀𝑁 = 0. Let 𝑁 = 2, i.e., ℎ = 𝜋/2. Then 

𝑦0 = 𝑦2 = 0, 𝑦1 = 1  and  𝑀0 = 𝑀2 = 0. 

Using formulae, we obtain 

𝑀0 + 4𝑀1 +𝑀2 =
6

ℎ2
(𝑦0 − 2𝑦1 + 𝑦2) 

or 

𝑀1 = −
12

𝜋2
 

Formula now gives the spline in each interval. Thus, in 0 ≤ 𝑥 ≤ 𝜋/2, we obtain 

𝑠(𝑥) =
2

𝜋
(
−2𝑥3

𝜋2
+
3𝑥

2
) 

which gives 𝑠′(𝑥) =
2

𝜋
[−

2

𝜋2
(3𝑥2) +

3

2
].    ………..(i) 

Hence 

𝑠′ (
𝜋

4
) =

2

𝜋
(−

6

𝜋2
𝜋2

16
+
3

2
) =

9

4𝜋
= 0.71619725 

Exact value of 𝑠′(𝜋/4) = cos 𝜋/4 = 1/√2 = 0.70710681. The percentage error in the 

computed value of 𝑠′(𝜋/4) is 1.28%. From (i), 

𝑠′′(𝑥) = −
24

𝜋3
𝑥 

and hence 

𝑠′′ (
𝜋

4
) = −

24

𝜋3
𝜋

4
= −

6

𝜋2
= −0.60792710 
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Since the exact value is −1/√2, the percentage error in this result is 14.03%. We now 

consider values of 𝑦 = sin 𝑥 in intervals of 10∘ from 𝑥 = 0 to 𝜋. To obtain the spline second 

derivatives we used a computer and the results are given in the following table (up to 𝑥 = 90∘ 

). 

 𝑦′′(𝑥) 

𝑥 (in degrees) Exact Cubic spline 

10 -0.173648178 -0.174089426 

20 -0.342020143 -0.342889233 

30 -0.500000000 -0.501270524 

40 -0.642787610 -0.644420964 

50 -0.766044443 -0.767990999 

60 -0.866025404 -0.868226016 

70 -0.939692621 -0.942080425 

80 -0.984807753 -0.987310197 

90 -1.000000000 -1.002541048 

 

It is seen that there is greater inaccuracy in the values of the spline second derivatives. 

Example 6: 

From the following data for 𝑦(𝑥), find 𝑦′(1.0). 

𝑥 -2 -1 2 3 

𝑦(𝑥) -12 -8 3 5 

The function from which the above data was calculated is given by 𝑦 = −
1

15
𝑥3 −

3

20
𝑥2 +

241

60
𝑥 − 3.9. Hence, the exact value of 𝑦′(1) is 3.51667. 

To apply the cubic spline formula (5.31), we observe that ℎ1 = 1, ℎ2 = 3 and ℎ3 = 1. 

For 𝑖 = 1,2, the recurrence relation gives: 

8𝑀1 + 3𝑀2 = −2 

and 

3𝑀1 + 8𝑀2 = −10 

since 𝑀0 = 𝑀3 = 0. We obtain 𝑀1 =
14

55
 and 𝑀2 = −

74

55
. In −1 ≤ 𝑥 ≤ 2, we have 
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𝑠2(𝑥) =
1

3
[
(2 − 𝑥)3

6
⋅
14

55
+
(𝑥 + 1)3

6
(−
74

55
)]

 +
1

3
[−8 −

21

55
] (2 − 𝑥) +

1

3
[3 −

9

6
(−
74

55
)] (𝑥 + 1)

 

Differentiating the above and putting 𝑥 = 1, we obtain 

𝑦′(1) ≈ 𝑠2
′ (1.0) =

1

3
[−

7

55
−
148

55
+
461

55
+
276

55
]

 = 3.52727, on simplification. 

 

3.2.3 Differentiation Formulae with Function Values 

In Section 3.2, we developed forward, backward and central difference approximations of 

derivatives in terms of finite differences. From the computational point of view, it would be 

convenient to express the numerical differentiation formulae in terms of function values. We 

list below some differentiation formulae for use in numerical computations. 

(i) Forward Differences 

𝑦′(𝑥𝑖) =
𝑦𝑖+1 − 𝑦𝑖

ℎ
; 𝑦′(𝑥𝑖) =

−𝑦𝑖+2 + 4𝑦𝑖+1 − 3𝑦𝑖
2ℎ

+ O(ℎ2)

𝑦′′(𝑥𝑖) =
𝑦𝑖 − 2𝑦𝑖+1 + 𝑦𝑖+2

ℎ2
; 𝑦′′(𝑥𝑖) =

−𝑦𝑖+3 + 4𝑦𝑖+2 − 5𝑦𝑖+1 + 2𝑦𝑖
ℎ2

 

(ii) Backward Differences 

𝑦′(𝑥𝑖) =
𝑦𝑖 − 𝑦𝑖−1

ℎ
; 𝑦′(𝑥𝑖) =

3𝑦𝑖 − 4𝑦𝑖−1 + 𝑦𝑖−2
2ℎ

;

𝑦′′(𝑥𝑖) =
𝑦𝑖 − 2𝑦𝑖−1 + 𝑦𝑖−2

ℎ2
; 𝑦′′(𝑥𝑖) =

2𝑦𝑖 − 5𝑦𝑖−1 + 4𝑦𝑖−2 − 𝑦𝑖−3
ℎ2

;

 

(iii) Central Differences 

𝑦′(𝑥𝑖) =
𝑦𝑖+1 − 𝑦𝑖−1

2ℎ
;  𝑦′(𝑥𝑖) =

−𝑦𝑖+2 + 8𝑦𝑖+1 − 8𝑦𝑖−1 + 𝑦𝑖−2
12ℎ

;

𝑦′′(𝑥𝑖) =
𝑦𝑖−1 − 2𝑦𝑖 + 𝑦𝑖+1

ℎ2
;

𝑦′′(𝑥𝑖) =
−𝑦𝑖+2 + 16𝑦𝑖+1 − 30𝑦𝑖 + 16𝑦𝑖−1 − 𝑦𝑖−2

12ℎ2

 

These formulae can be derived by using Taylor series expansion of the functions. 
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3.3. Maximum and Minimum Values of a Tabulated Function: 

It is known that the maximum and minimum values of a function can be found by equating the 

first derivative to zero and solving for the variable. The same procedure can be applied to 

determine the maxima and minima of a tabulated function. 

Consider Newton's forward difference formula 

𝑦 = 𝑦0 + 𝑝Δ𝑦0 +
𝑝(𝑝 − 1)

2
Δ2𝑦0 +

𝑝(𝑝 − 1)(𝑝 − 2)

6
Δ3𝑦0 +⋯ 

Differentiating this with respect to 𝑝, we obtain 

 
𝑑𝑦

𝑑𝑝
= Δ𝑦0 +

2𝑝−1

2
Δ2𝑦0 +

3𝑝2−3𝑝+2

6
Δ3𝑦0 +⋯   ……..(1) 

For maxima or minima 𝑑𝑦/𝑑𝑝 = 0. Hence, terminating the right-hand side, for simplicity, 

after the third difference and equating it to zero, we obtain the quadratic for 𝑝 

𝑐0 + 𝑐1𝑝 + 𝑐2𝑝
2 = 0 ………(2) 

where 

and 

𝑐0 = Δ𝑦0 −
1

2
Δ2𝑦0 +

1

3
Δ3𝑦0

𝑐1 = Δ
2𝑦0 − Δ

3𝑦0

𝑐2 =
1

2
Δ3𝑦0 }

 

 
  ………..(3) 

Values of 𝑥 can then be found from the relation 𝑥 = 𝑥0 + 𝑝ℎ. 

Example 1: 

From the following table, find 𝑥, correct to two decimal places, for which 𝑦 is maximum and 

find this value of 𝑦. 

𝑥 𝑦 

1.2 0.9320 

1.3 0.9636 

1.4 0.9855 



 

48 

 

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.  

 

1.5 0.9975 

1.6 0.9996 

The table of differences is 

 

Let 𝑥0 = 1.2. Then formula (1), terminated after second differences, gives 

0 = 0.0316 +
2𝑝 − 1

2
(−0.0097) 

from which we obtain 𝑝 = 3.8. Hence 

𝑥 = 𝑥0 + 𝑝ℎ = 1.2 + (3.8)(0.1) = 1.58. 

For this value of 𝑥, Newton's backward difference formula at 𝑥𝑛 = 1.6 gives 

𝑦(1.58) = 0.9996 − 0.2(0.0021) +
−0.2(−0.2 + 1)

2
(−0.0099)

 = 0.9996 − 0.0004 + 0.0008
 = 1.0

 

3.4.Numerical Integration: 

The general problem of numerical integration may be stated as follows. Given a set of data 

points (𝑥0, 𝑦0), (𝑥1, 𝑦1),… , (𝑥𝑛, 𝑦𝑛) of a function 𝑦 = 𝑓(𝑥), where 𝑓(𝑥) is not known 

explicitly, it is required to compute the value of the definite integral 

𝐼 = ∫  
𝑏

𝑎
 𝑦𝑑𝑥   …………(1) 
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As in the case of numerical differentiation, one replaces 𝑓(𝑥) by an interpolating polynomial 

𝜙(𝑥) and obtains, on integration, an approximate value of the definite integral. Thus, different 

integration formulae can be obtained depending upon the type of the interpolation formula 

used. We derive in this section a general formula for numerical integration using Newton's 

forward difference formula. 

Let the interval [𝑎, 𝑏] be divided into 𝑛 equal subintervals such that  

𝑎 = 𝑥0 < 𝑥1 < 𝑥2 < ⋯𝑥𝑛 = 𝑏. Clearly, 𝑥𝑛 = 𝑥0 + 𝑛ℎ. Hence the integral becomes 

𝐼 = ∫  
𝑥𝑛

𝑥0

𝑦𝑑𝑥 

Approximating 𝑦 by Newton's forward difference formula, we obtain 

𝐼 = ∫  
𝑥𝑛

𝑥0

[𝑦0 + 𝑝Δ𝑦0 +
𝑝(𝑝 − 1)

2
Δ2𝑦0 +

𝑝(𝑝 − 1)(𝑝 − 2)

6
Δ3𝑦0 +⋯]𝑑𝑥 

Since 𝑥 = 𝑥0 + 𝑝ℎ, 𝑑𝑥 = ℎ𝑑𝑝 and hence the above integral becomes 

𝐼 = ℎ∫  
𝑛

0

[𝑦0 + 𝑝Δ𝑦0 +
𝑝(𝑝 − 1)

2
Δ2𝑦0 +

𝑝(𝑝 − 1)(𝑝 − 2)

6
Δ3𝑦0 +⋯] 𝑑𝑝 

which gives on simplification 

 ∫  
𝑥𝑛

𝑥0
 𝑦𝑑𝑥 = 𝑛ℎ [𝑦0 +

𝑛

2
Δ𝑦0 +

𝑛(2𝑛−3)

12
Δ2𝑦0 +

𝑛(𝑛−2)2

24
Δ3𝑦0 +⋯]  ……….(2) 

From this general formula, we can obtain different integration formulae by putting 𝑛 =

1,2,3,…, etc. We derive here a few of these formulae but it should be remarked that the 

trapezoidal and Simpson's 1/3-rules are found to give sufficient accuracy for use in practical 

problems. 

3.4.1.Trapezoidal Rule: 

Setting 𝑛 = 1 in the general formula (2), all differences higher than the first will become zero 

and we obtain 

 ∫  
𝑥1

𝑥0
 𝑦𝑑𝑥 = ℎ (𝑦0 +

1

2
Δ𝑦0) = ℎ [𝑦0 +

1

2
(𝑦1 − 𝑦0)] =

ℎ

2
(𝑦0 + 𝑦1). …..(3) 
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For the next interval [𝑥1, 𝑥2], we deduce similarly 

 ∫  
𝑥2

𝑥1
 𝑦𝑑𝑥 =

ℎ

2
(𝑦1 + 𝑦2)   ………. (4) 

and so on. For the last interval [𝑥𝑛−1, 𝑥𝑛], we have 

 ∫  
𝑥𝑛

𝑥𝑛−1
 𝑦𝑑𝑥 =

ℎ

2
(𝑦𝑛−1 + 𝑦𝑛) ………….. (5) 

Combining all these expressions, we obtain the rule 

 ∫  
𝑥𝑛

𝑥0
 𝑦𝑑𝑥 =

ℎ

2
[𝑦0 + 2(𝑦1 + 𝑦2 +⋯+ 𝑦𝑛−1) + 𝑦𝑛]   ………….(6) 

which is known as the trapezoidal rule. 

The geometrical significance of this rule is that the curve 𝑦 = 𝑓(𝑥) is replaced by 𝑛 straight 

lines joining the points (𝑥0, 𝑦0) and (𝑥1, 𝑦1); (𝑥1, 𝑦1) and (𝑥2, 𝑦2), … , (𝑥𝑛−1, 𝑦𝑛−1) and 

(𝑥𝑛, 𝑦𝑛). The area bounded by the curve 𝑦 = 𝑓(𝑥), the ordinates 𝑥 = 𝑥0 and 𝑥 = 𝑥𝑛, and the 

𝑥-axis is then approximately equivalent to the sum of the areas of the 𝑛 trapeziums obtained. 

The error of the trapezoidal formula can be obtained in the following way. Let 𝑦 = 𝑓(𝑥) be 

continuous, well-behaved, and possess continuous derivatives in [𝑥0, 𝑥𝑛]. Expanding 𝑦 in a 

Taylor's series around 𝑥 = 𝑥0, we obtain 

∫  
𝑥1

𝑥0

 𝑦𝑑𝑥 = ∫  
𝑥1

𝑥0

  [𝑦0 + (𝑥 − 𝑥0)𝑦0
′ +

(𝑥 − 𝑥0)
2

2
𝑦0
′′ +⋯]𝑑𝑥 

= ℎ𝑦0 +
ℎ2

2
𝑦0
′ +

ℎ3

6
𝑦0
′′ +⋯….        ………..(7) 

Similarly, 

ℎ

2
(𝑦0 + 𝑦1) =

ℎ

2
(𝑦0 + 𝑦0 + ℎ𝑦0

′ +
ℎ2

2
𝑦0
′′ +

ℎ3

6
𝑦0
′′′ +⋯) 

= ℎ𝑦0 +
ℎ2

2
𝑦0
′ +

ℎ3

4
𝑦0
′′′ +⋯….      …………..(8) 

From Equations. (4) and (5), we obtain 

 ∫  
𝑥1

𝑥0
 𝑦𝑑𝑥 −

ℎ

2
(𝑦0 + 𝑦1) = −

1

12
ℎ3𝑦0

′′ +⋯    …………(9) 
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which is the error in the interval [𝑥0, 𝑥1]. Proceeding in a similar manner we obtain the errors 

in the remaining subintervals, viz., [𝑥1, 𝑥2], [𝑥2, 𝑥3],… and [𝑥𝑛−1, 𝑥𝑛]. We thus have 𝐸 =

−
1

12
ℎ3(𝑦0

′′ + 𝑦1
′′ +⋯+ 𝑦𝑛−1

′′ )    ……….(10) 

where 𝐸 is the total error. Assuming that 𝑦′′(𝑥‾) is the largest value of the 𝑛 quantities on the 

right-hand side of Equation (10), we obtain 

 𝐸 = −
1

12
ℎ3𝑛𝑦′′(𝑥‾) = −

𝑏−𝑎

12
ℎ2𝑦′′(𝑥‾) ………..(11) 

since 𝑛ℎ = 𝑏 − 𝑎. 

3.4.2. Simpson's 1/3-Rule: 

This rule is obtained by putting 𝑛 = 2 in Equation (2), i.e. by replacing the curve by 𝑛/2 arcs 

of second-degree polynomials or parabolas. We have then 

∫  
𝑥2

𝑥0

𝑦𝑑𝑥 = 2ℎ (𝑦0 + Δ𝑦0 +
1

6
Δ2𝑦0) =

ℎ

3
(𝑦0 + 4𝑦1 + 𝑦2). 

Similarly, 

 ∫  
𝑥4

𝑥2

 𝑦𝑑𝑥 =
ℎ

3
(𝑦2 + 4𝑦3 + 𝑦4)

 ⋮

 

and finally 

∫  
𝑥𝑛

𝑥𝑛−2

𝑦𝑑𝑥 =
ℎ

3
(𝑦𝑛−2 + 4𝑦𝑛−1 + 𝑦𝑛) 

Summing up, we obtain 

∫  
𝑥𝑛

𝑥0
 𝑦𝑑𝑥 =

ℎ

3
[𝑦0 + 4(𝑦1 + 𝑦3 + 𝑦5 +⋯+ 𝑦𝑛−1) + 2(𝑦2 + 𝑦4 + 𝑦6 +⋯+ 𝑦𝑛−2) + 𝑦n]                     

                                                                                                                    …………..(12) 

which is known as Simpson's 1/3-rule, or simply Simpson's rule. It should be noted that this 

rule requires the division of the whole range into an even number of subintervals of width ℎ. 
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Following the method outlined in Section 3.4.1, it can be shown that the error in Simpson's 

rule is given by 

∫  
𝑏

𝑎

 𝑦𝑑𝑥 =
ℎ

3
[𝑦0 + 4(𝑦1 + 𝑦3 + 𝑦5 +⋯+ 𝑦𝑛−1)

+2(𝑦2 + 𝑦4 + 𝑦6 +⋯+ 𝑦𝑛−2) + 𝑦𝑛]

 

=
𝑏−𝑎

180
ℎ4𝑦 iv (𝑥‾)        ……………(13) 

where 𝑦 iv (𝑥‾) is the largest value of the fourth derivatives. 

3.4.3 Simpson's 3/8-Rule 

Setting 𝑛 = 3 in Equation (2), we observe that all the differences higher than the third will 

become zero and we obtain 

∫  
𝑥3

𝑥0

 𝑦𝑑𝑥 = 3ℎ (𝑦0 +
3

2
Δ𝑦0 +

3

4
Δ2𝑦0 +

1

8
Δ3𝑦0)

 = 3ℎ [𝑦0 +
3

2
(𝑦1 − 𝑦0) +

3

4
(𝑦2 − 2𝑦1 + 𝑦0) +

1

8
(𝑦3 − 3𝑦2 + 3𝑦1 − 𝑦0)]

 =
3ℎ

8
(𝑦0 + 3𝑦1 + 3𝑦2 + 𝑦3)

 

Similarly 

∫  
𝑥6

𝑥3

𝑦𝑑𝑥 =
3ℎ

8
(𝑦3 + 3𝑦4 + 3𝑦5 + 𝑦6) 

and so on. Summing up all these, we obtain 

∫  
𝑥𝑛

𝑥0

 𝑦𝑑𝑥 =
3ℎ

8
[(𝑦0 + 3𝑦1 + 3𝑦2 + 𝑦3) + (𝑦3 + 3𝑦4 + 3𝑦5 + 𝑦6) +⋯

+ (𝑦𝑛−3 + 3𝑦𝑛−2 + 3𝑦𝑛−1 + 𝑦𝑛) 

=
3ℎ

8
(𝑦0 + 3𝑦1 + 3𝑦2 + 2𝑦3 + 3𝑦4 + 3𝑦5 + 2𝑦6 +⋯ .+2𝑦𝑛−3 + 3𝑦𝑛−2 + 3𝑦𝑛−1 + 𝑦𝑛)   

                                                                                                                       …………(14) 



 

53 

 

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.  

 

This rule, called Simpson's (3/8)-rule, is not so accurate as Simpson's rule, the dominant term 

in the error of this formula being −(3/80)ℎ5𝑦iv(𝑥‾). 

3.4.4. Boole's and Weddle's Rules: 

If we wish to retain differences up to those of the fourth order, we should integrate between 

𝑥0 and 𝑥4 and obtain Boole's formula  

∫  
𝑥4

𝑥0
 𝑦𝑑𝑥 =

2ℎ

45
(7𝑦0 + 32𝑦1 + 12𝑦2 + 32𝑦3 + 7𝑦4)   ………….(15) 

The leading term in the error of this formula can be shown to be 

−
8ℎ7

945
𝑦vi(𝑥‾) 

If, on the other hand, we integrate between 𝑥0 and 𝑥6 retaining differences up to those of the 

sixth order, we obtain Weddle's rule  

∫  
𝑥6

𝑥0
 𝑦𝑑𝑥 =

3ℎ

10
(𝑦0 + 5𝑦1 + 𝑦2 + 6𝑦3 + 𝑦4 + 5𝑦5 + 𝑦6)      …………(16) 

the error in which is given by −(ℎ7/140)𝑦vi(𝑥‾). 

These two formulae can also be generalized as in the previous cases. It should, however, be 

noted that the number of strips will have to be a multiple of four in the case of Boole's rule 

and a multiple of six for Weddle's rule. 

3.4.5. Use of Cubic Splines: 

If 𝑠(𝑥) is the cubic spline in the interval (𝑥𝑖−1, 𝑥𝑖), then we have 

𝐼 = ∫  
𝑥𝑛

𝑥0

 𝑦𝑑𝑥 ≈

= ∑  

𝑛

𝑖=1

 ∫  
𝑛

𝑥𝑖−1

 ∫  
𝑥𝑖

𝑥𝑖−1

 𝑠(𝑥)𝑑𝑥

{
1

6ℎ
[(𝑥𝑖 − 𝑥)

3𝑀𝑖−1 + (𝑥 − 𝑥𝑖−1)
3𝑀𝑖]

+
1

ℎ
(𝑥𝑖 − 𝑥)(𝑦𝑖−1 −

ℎ2

6
𝑀𝑖−1) +

1

ℎ
(𝑥 − 𝑥𝑖−1) (𝑦𝑖 −

ℎ2

6
𝑀𝑖)}𝑑𝑥

 

On carrying out the integration and simplifying, we obtain 
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𝐼 = ∑  𝑛
𝑖=1   [

ℎ

2
(𝑦𝑖−1 + 𝑦𝑖) −

ℎ3

24
(𝑀𝑖−1 +𝑀𝑖)] ……….(17) 

where 𝑀𝑖, the spline second-derivatives, are calculated from the recurrence relation 

𝑀𝑖−1 + 4𝑀𝑖 +𝑀𝑖+1 =
6

ℎ2
(𝑦𝑖−1 − 2𝑦𝑖 + 𝑦𝑖+1), 𝑖 = 1,2, … , 𝑛 − 1 

3.4.6. Romberg Integration: 

This method can often be used to improve the approximate results obtained by the finite-

difference methods. Its application to the numerical evaluation of definite integrals, for 

example in the use of trapezoidal rule, can be described, as follows. We consider the definite 

integral 

𝐼 = ∫  
𝑏

𝑎

𝑦𝑑𝑥 

and evaluate it by the trapezoidal rule equation (6) with two different subintervals of widths 

ℎ1 and ℎ2 to obtain the approximate values 𝐼1 and 𝐼2, respectively. Then Eq. (6.38) gives the 

errors 𝐸1 and 𝐸2 as 

 𝐸1 = −
1

12
(𝑏 − 𝑎)ℎ1

2𝑦′′(𝑥‾)      ………….(18) 

and 𝐸2 = −
1

12
(𝑏 − 𝑎)ℎ2

2𝑦′′(𝑥‾) ………….(19) 

Since the term 𝑦′′(𝑥‾) in Eq. (6.46) is also the largest value of 𝑦′′(𝑥), it is reasonable to 

assume that the quantities 𝑦′′(𝑥‾) and 𝑦′′(𝑥‾) are very nearly the same. We therefore have 

𝐸1
𝐸2
=
ℎ1
2

ℎ2
2 

and hence 

𝐸2
𝐸2 − 𝐸1

=
ℎ2
2

ℎ2
2 − ℎ1

2 

Since 𝐸2 − 𝐸1 = 𝐼2 − 𝐼1, this gives 𝐸2 =
ℎ2
2

ℎ2
2−ℎ1

2
(𝐼2 − 𝐼1)  ………..(20) 
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We therefore obtain a new approximation 𝐼3 defined by 𝐼3 = 𝐼2 − 𝐸2 =
𝐼1ℎ2

2−𝐼2ℎ1
2

ℎ2
2−ℎ1

2  …..(21)        

which, in general, would be closer to the actual value-provided that the errors decrease 

monotonically and are of the same sign. 

If we now set 

ℎ2 =
1

2
ℎ1 =

1

2
ℎ 

Equation (6.48) can be written in the more convenient form 

 𝐼 (ℎ,
1

2
ℎ) =

1

3
[4𝐼 (

1

2
ℎ) − 𝐼(ℎ)]      ………….(22) 

where 𝐼(ℎ) = 𝐼1, 

𝐼 (
1

2
ℎ) = 𝐼2  and  𝐼 (ℎ,

1

2
ℎ) = 𝐼3. 

With this notation the following table can be formed 

 

The computations can be stopped when two successive values are sufficiently close to each 

other. This method, due to L.F. Richardson, is called the deferred approach to the limit and 

the systematic tabulation of this is called Romberg Integration. 

3.4.7 Newton-Cotes Integration Formulae: 

Let the interpolation points, 𝑥𝑖, be equally spaced,  



 

56 

 

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.  

 

i.e. let 𝑥𝑖 = 𝑥0 + 𝑖ℎ, 𝑖 = 0,1,2,… , 𝑛, and let the end points of the interval of integration be 

placed such that 

𝑥0 = 𝑎. 𝑥𝑛 = 𝑏, ℎ =
𝑏 − 𝑎

𝑛
. 

Then the definite integral 𝐼 = ∫  
𝑏

𝑎
 𝑦𝑑𝑥  …………(23) 

is evaluated by an integration formula of the type 𝐼𝑛 = ∑  𝑛
𝑖=0  𝐶𝑖𝑦𝑖    …………(24) 

where the coefficients 𝐶𝑖 are determined completely by the abscissae 𝑥𝑖. Integration formulae 

of the type (24) are called Newton-Cotes closed integration formulae. They are 'closed' since 

the end points 𝑎 and 𝑏 are the extreme abscissae in the formulae. It is easily seen that the 

integration formulae derived in Equations. (21)-(24) are the simplest Newton-Cotes closed 

formulae. 

On the other hand, formulae which do not employ the end points are called Newton-Cotes, 

open integration formulae. We give below the five simplest Newton-Cotes open integration 

formulae 

(a) ∫  
𝑥2

𝑥0
𝑦𝑑𝑥 = 2ℎ𝑦1 +

ℎ3

3
𝑦′′(𝑥‾), (𝑥0 < 𝑥‾ < 𝑥2)        ……….(25) 

(b) ∫  
𝑥3

𝑥0
𝑦𝑑𝑥 =

3ℎ

2
(𝑦1 + 𝑦2) +

3ℎ3

4
𝑦′′(𝑥‾), (𝑥0 < 𝑥‾ < 𝑥3)   ……….(26) 

(c) ∫  
𝑥4

𝑥0
𝑦𝑑𝑥 =

4ℎ

3
(2𝑦1 − 𝑦2 + 2𝑦3) +

14

45
ℎ5𝑦 iv (𝑥‾), (𝑥0 < 𝑥‾ < 𝑥4) ………(27) 

(d) ∫  
𝑥5

𝑥0
𝑦𝑑𝑥 =

5ℎ

24
(11𝑦1 + 𝑦2 + 𝑦3 + 11𝑦4) +

95

144
ℎ5𝑦 iv (𝑥‾), (𝑥0 < 𝑥‾ < 𝑥5)  ……..(28) 

(e) ∫  
𝑥6

𝑥0
𝑦𝑑𝑥 =

6ℎ

20
(11𝑦1 − 14𝑦2 + 26𝑦3 − 14𝑦4 + 11𝑦5) +

41

140
ℎ7𝑦vi (𝑥‾),  ……..(29) 

(𝑥0 < 𝑥‾ < 𝑥6) 

A convenient method for determining the coefficients in the Newton-Cotes formulae is the 

method of undetermined coefficients.  

Example 1:  

Find, from the following table, the area bounded by the curve and the 𝑥-axis from 
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 𝑥 = 7.47 to 𝑥 = 7.52 

𝑥 𝑓(𝑥)  𝑥 𝑓(𝑥) 

7.47 1.93  7.50 2.01 

7.48 1.95  7.51 2.03 

7.49 1.98  7.52 2.06 

We know that 

 Area = ∫  
7.52

7.47

𝑓(𝑥)𝑑𝑥 

with ℎ = 0.01, the trapezoidal rule given in Equation(6) of 3.4.1 gives 

 Area =
0.01

2
[1.93 + 2(1.95 + 1.98 + 2.01 + 2.03) + 2.06] = 0.0996. 

Example 2: 

A solid of revolution is formed by rotating about the 𝑥-axis the area between the 𝑥-axis, the 

lines 𝑥 = 0 and 𝑥 = 1, and a curve through the points with the following coordinates: 

𝑥 𝑦 

0.00 1.0000 

0.25 0.9896 

0.50 0.9589 

0.75 0.9089 

1.00 0.8415 

 

Estimate the volume of the solid formed, giving the answer to three decimal places. 

If 𝑉 is the volume of the solid formed, then we know that 

𝑉 = 𝜋∫  
1

0

𝑦2𝑑𝑥 

Hence we need the values of 𝑦2 and these are tabulated below, correct to four decimal places 

𝑥 𝑦2 
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0.00 1.0000 

0.25 0.9793 

0.50 0.9195 

0.75 0.8261 

1.00 0.7081 

 

With ℎ = 0.25, Simpson's rule gives 

𝑉 =
𝜋(0.25)

3
[1.0000 + 4(0.9793 + 0.8261) + 2(0.9195) + 0.7081]

 = 2.8192

 

Example 3: 

Evaluate 𝐼 = ∫  
1

0

1

1+𝑥
𝑑𝑥 

correct to three decimal places. 

We solve this example by both the trapezoidal and Simpson's rules with ℎ = 0.5,0.25 and 

0.125 respectively. 

(i) ℎ = 0.5 : The values of 𝑥 and 𝑦 are tabulated below: 

𝑥 𝑦 

0.0 1.0000 

0.5 0.6667 

1.0 0.5000 

(a) Trapezoidal rule gives 

𝐼 =
1

4
[1.0000+ 2(0.6667) + 0.5] = 0.70835 

(b) Simpson's rule gives 

𝐼 =
1

6
[1.0000 + 4(0.6667) + 0.5] = 0.6945 

(ii)  ℎ = 0.25 : The tabulated values of 𝑥 and 𝑦 are given below: 

𝑥 𝑦 
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0.00 1.0000 

0.25 0.8000 

0.50 0.6667 

0.75 0.5714 

1.00 0.5000 

 

(a) Trapezoidal rule gives 

𝐼 =
1

8
[1.0 + 2(0.8000 + 0.6667+ 0.5714) + 0.5] = 0.6970. 

(b) Simpson's rule gives 

𝐼 =
1

12
[1.0 + 4(0.8000+ 0.5714) + 2(0.6667) + 0.5] = 0.6932 

(iii) Finally, we take ℎ = 0.125 : The tabulated values of 𝑥 and 𝑦 are 

 

 

𝑥 𝑦  𝑥 𝑦 

0 1.0  0.625 0.6154 

0.125 0.8889  0.750 0.5714 

0.250 0.8000  0.875 0.5333 

0.375 0.7273  1.0 0.5 

0.5 0.6667    

 

(a) Trapezoidal rule gives 

𝐼 =
1

16
[1.0 + 2(0.8889 + 0.8000+ 0.7273 + 0.6667)

 +0.6154 + 0.5714 + 0.5333) + 0.5]
=0.6941

 

(b) Simpson's rule gives 
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𝐼 =
1

24
[1.0 + 4(0.8889 + 0.7273+ 0.6154 + 0.5333)

 +2(0.8000 + 0.6667+ 0.5714) + 0.5]
=0.6932

 

Hence the value of 𝐼 may be taken to be equal to 0.693 , correct to three decimal places. The 

exact value of 𝐼 is log𝑒 2, which is equal to 0.693147…. This example demonstrates that, in 

general, Simpson's rule yields more accurate results than the trapezoidal rule. 

Example 4: 

Use Romberg's method to compute 𝐼 = ∫  
1

0

1

1+𝑥
𝑑𝑥 

correct to three decimal places. 

We take ℎ = 0.5,0.25 and 0.125 successively and use the results obtained in the previous 

example. We therefore have 

𝐼(ℎ) = 0.7084, 𝐼 (
1

2
ℎ) = 0.6970,  and  𝐼 (

1

4
ℎ) = 0.6941 

Hence, using Eq. (6.49), we obtain 

𝐼 (ℎ,
1

2
ℎ) = 0.6970 +

1

3
(0.6970 − 0.7084) = 0.6932. 

𝐼 (
1

2
ℎ,
1

4
ℎ) = 0.6941 +

1

3
(0.6941 − 0.6970) = 0.6931 

Finally, 

𝐼 (ℎ,
1

2
ℎ,
1

4
ℎ) = 0.6931 +

1

3
(0.6931 − 0.6932) = 0.6931 

The table of values is, therefore, 

 

An obvious advantage of this method is that the accuracy of the computed value is known at 

each step. 

Example 5: 

 Apply trapezoidal and Simpson's rules to the integral 

𝐼 = ∫  
1

0

√1 − 𝑥2𝑑𝑥 
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continually halving the interval ℎ for better accuracy. 

Using 10,20,30,40 and 50 subintervals successively, an electronic computer, with a nine 

decimal precision, produced the results given in Table below. The true value of the integral is 

𝜋/4 = 0.785398163. 

No. of subintervals Trapezoidal rule Simpson's rule 

10 0.776129582 0.781752040 

20 0.782116220 0.784111766 

30 0.783610789 0.784698434 

40 0.784236934 0.784943838 

50 0.784567128 0.785073144 

 

Example 6:  

Evaluate 𝐼 = ∫  
1

0
sin 𝜋𝑥𝑑𝑥 

using the cubic spline method. 

The exact value of 𝐼 is 2/𝜋 = 0.63661978. To make the calculations easier, we take 𝑛 = 2, 

i.e. ℎ = 0.5. In this case, the table of values of 𝑥 and 𝑦 = sin 𝑝𝑥 is 

𝑥 𝑦 

0 0 

0.5 1.0 

1.0 0.0 

 

with 𝑀0 = 𝑀2 = 0, we obtain 𝑀1 = −12. Then formula equation (17) of 3.4.5 gives 

𝐼 =
1

4
(𝑦0 + 𝑦1) −

1

192
(𝑀0 +𝑀1) +

1

4
(𝑦1 + 𝑦2) −

1

192
(𝑀1 +𝑀2)

 =
1

4
+
1

16
+
1

4
+
1

16

 =
5

8
 = 0.62500000
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which shows that the absolute error in the natural spline solution is 0.01161978 . It is easily 

verified that the Simpson's rule gives a value with an absolute error 0.03004689 , which is 

more than the error in the spline solution. 

Example 7: 

Derive Simpson's 1/3-rule using the method of undetermined coefficients. 

We assume the formula 

∫  
ℎ

−ℎ

 𝑦𝑑𝑥 = 𝑎−1𝑦−1 + 𝑎0𝑦0 + 𝑎1𝑦1 (𝑖) 

where the coefficients 𝑎−1, 𝑎0 and 𝑎1 have to be determined. For this, we assume that 

formula (i) is exact when 𝑦(𝑥) is 1, 𝑥 or 𝑥2. Putting, therefore, 𝑦(𝑥) = 1, 𝑥 and 𝑥2 

successively in (i), we obtain the relations 

and 

𝑎−1 + 𝑎0 + 𝑎1  = ∫  
ℎ

−ℎ

 𝑑𝑥 = 2ℎ, (𝑖𝑖)

−𝑎−1 + 𝑎1  = ∫  
ℎ

−ℎ

 𝑥𝑑𝑥 = 0 (𝑖𝑖𝑖)

𝑎−1 + 𝑎1  =
2

3
ℎ (𝑖𝑣)

 

Solving (ii), (iii) and (iv) for 𝑎−1, 𝑎0 and 𝑎1, we obtain 

𝑎−1 =
2

3
= 𝑎1  and  𝑎0 =

4ℎ

3
. 

Exercises: 

1.Find  
d

dx
𝐽0(𝑥) at x=0.1 from the following table: 

    (0, 1.0) ,(0.1,0.9975), (0.2, 0.9900), (0.3, 0.9776), (0.4,0.9604). 

2. Tabulate the function 𝑦 = 𝑓(𝑥) = 𝑥3 − 10𝑥 + 6  at 𝑥0 = −0.5, 𝑥1 = 1.00 and 𝑥2 = 2.0. 

    Compute its first and second derivatives at x=1.00 using Lagrange’s interpolation formula.   

    Compare your results with true values. 

3. From the following values of x and y, find 
dy

dx
 at x=2 using the cubic spine method. 

    (2,11) (3,49) (4,123) 

4. Evaluate (a) ∫ 𝑥 𝑠𝑖𝑛𝑥 𝑑𝑥
𝜋

0
  (b)∫

x

5+2x
 𝑑𝑥

2

−2
  

    using the trapezoidal rule with five ordinates. 

5. Using Simpson’s 
1

3
 – rule with h=1, evaluate the integral I=∫ 𝑥2 𝑙𝑜𝑔𝑥 𝑑𝑥

7

3
. 
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Unit IV 

Numerical Solutions of Ordinary Differential Equations: Taylor’s Series Method – Picard’s 

method – Euler’s method – Runge - Kutta method.  

Chapter 4: Sections - 4.1 to 4.4 

 

4.1 Introduction: 

Many problems in science and engineering can be reduced to the problem of solving 

differential equations satisfying certain given conditions. The analytical methods of solution, 

with which the reader is assumed to be familiar, can be applied to solve only a selected class 

of differential equations. Those equations which govern physical systems do not possess, in 

general closed form solutions, and hence recourse must be made to numerical methods for 

solving such differential equations. 

To describe various numerical methods for the solution of ordinary differential equations, we 

consider the general first order differential equation 
𝑑𝑦

𝑑𝑥
= 𝑓(𝑥, 𝑦)   ………..(1) 

with the initial condition,  𝑦(𝑥0) = 𝑦0  ……….(2) 

and illustrate the theory with respect to this equation. The methods so developed can, in 

general, be applied to the solution of systems of first-order equations, and will yield the 

solution in one of the two forms: 

(i) A series for 𝑦 in terms of powers of 𝑥, from which the value of 𝑦 can be obtained by direct 

substitution. 

(ii) A set of tabulated values of 𝑥 and 𝑦. 

The methods of Taylor and Picard belong to class (i), whereas those of Euler, Runge-Kutta, 

Adams-Bashforth, etc., belong to class (ii). These latter methods are called step-by-step 

methods or marching methods because the values of 𝑦 are computed by short steps ahead for 

equal intervals ℎ of the independent variable. In the methods of Euler and Runge-Kutta, the 

interval length ℎ should be kept small and hence these methods can be applied for tabulating 𝑦 

over a limited range only. If, however, the function values are desired over a wider range, the 

methods due to Adams-Bashforth, AdamsMoulton, Milne, etc., may be used. These methods 

use finite-differences and require 'starting values' which are usually obtained by Taylor's series 

or Runge-Kutta methods. 
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It is well-known that a differential equation of the 𝑛th order will have 𝑛 arbitrary constants in 

its general solution. In order to compute the numerical solution of such an equation, we 

therefore need 𝑛 conditions. Problems in which all the initial conditions are specified at the 

initial point only are called initial value problems. For example, the problem defined by Eqs. 

(1) is an initial value problem. On the other hand, in problems involving second-and higher-

order differential equations, we may prescribe the conditions at two or more points. Such 

problems are called boundary value problems. 

We shall first describe methods for solving initial value problems of the type (8.1), and at the 

end of the chapter we will outline methods for solving boundary value problems for second-

order differential equations. 

4.2 Solution by Taylor's Series: 

We consider the differential equation 𝑦′ = 𝑓(𝑥, 𝑦) ………. (1) 

with the initial condition 𝑦(𝑥0) = 𝑦0   ………. (2) 

If 𝑦(𝑥) is the exact solution of Eq. (1), then the Taylor's series for 𝑦(𝑥) around 𝑥 = 𝑥0 is 

given by 𝑦(𝑥) = 𝑦0 + (𝑥 − 𝑥0)𝑦0
′ +

(𝑥−𝑥0)
2

2!
𝑦0
′′ +⋯   ………. (3) 

If the values of 𝑦0
′ , 𝑦0

′′, … are known, then Equation (3) gives a power series for 𝑦. Using the 

formula for total derivatives, we can write 

𝑦′′ = 𝑓′ = 𝑓𝑥 + 𝑦
′𝑓𝑦 = 𝑓𝑥 + 𝑓𝑓𝑦  

where the suffixes denote partial derivatives with respect to the variable concerned. Similarly, 

we obtain 

𝑦′′′ = 𝑓′′ = 𝑓𝑥𝑥 + 𝑓𝑥𝑦𝑓 + 𝑓(𝑓𝑦𝑥 + 𝑓𝑦𝑦𝑓) + 𝑓𝑦(𝑓𝑥 + 𝑓𝑦𝑓)

 = 𝑓𝑥𝑥 + 2𝑓𝑓𝑥𝑦 + 𝑓
2𝑓𝑦𝑦 + 𝑓𝑥𝑓𝑦 + 𝑓𝑓𝑦

2
 

and other higher derivatives of 𝑦. The method can easily be extended to simultaneous and 

higher-order differential equations. 

Example 1:  

From the Taylor series for 𝑦(𝑥), find 𝑦(0.1) correct to four decimal places if 𝑦(𝑥) satisfies 

𝑦′ = 𝑥 − 𝑦2  and  𝑦(0) = 1 

The Taylor series for 𝑦(𝑥) is given by 

𝑦(𝑥) = 1 + 𝑥𝑦0
′ +

𝑥2

2
𝑦0
′′ +

𝑥3

6
𝑦0
′′′ +

𝑥4

24
𝑦0
iv +

𝑥5

120
𝑦0
v +⋯ 

The derivatives 𝑦0
′ , 𝑦0

′′, … etc. are obtained thus: 
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𝑦′(𝑥) = 𝑥 − 𝑦2 𝑦0
′ = −1

𝑦′′(𝑥) = 1 − 2𝑦𝑦′ 𝑦0
′′ = 3

𝑦′′′(𝑥) = −2𝑦𝑦′′ − 2𝑦′2 𝑦0
′′′ = −8

𝑦iv(𝑥) = −2𝑦𝑦′′′ − 6𝑦′𝑦′′ 𝑦0
iv = 34

𝑦v(𝑥) = −2𝑦𝑦iv − 8𝑦′𝑦′′′ − 6𝑦′′2 𝑦0
v = −186

 

Using these values, the Taylor series becomes 

𝑦(𝑥) = 1 − 𝑥 +
3

2
𝑥2 −

4

3
𝑥3 +

17

12
𝑥4 −

31

20
𝑥5 +⋯ 

To obtain the value of 𝑦(0.1) correct to four decimal places, it is found that the terms up to 

𝑥4 should be considered, and we have 𝑦(0.1) = 0.9138. 

Suppose that we wish to find the range of values of 𝑥 for which the above series, truncated 

after the term containing 𝑥4, can be used to compute the values of 𝑦 correct to four decimal 

places. We need only to write 

31

20
𝑥5 ≤ 0.00005  or  𝑥 ≤ 0.126 

Example 2: 

 Given the differential equation 𝑦′′ − 𝑥𝑦′ − 𝑦 = 0 

with the conditions 𝑦(0) = 1 and 𝑦′(0) = 0, use Taylor's series method to determine the 

value of 𝑦(0.1). 

We have 𝑦(𝑥) = 1 and 𝑦′(𝑥) = 0 when 𝑥 = 0. The given differential equation is 

𝑦′′(𝑥) = 𝑥𝑦′(𝑥) + 𝑦(𝑥) (𝑖) 

Hence 𝑦′′(0) = 𝑦(0) = 1. Successive differentiation of (i) gives 

𝑦′′′(𝑥) = 𝑥𝑦′′(𝑥) + 𝑦′(𝑥) + 𝑦′(𝑥) = 𝑥𝑦′′(𝑥) + 2𝑦′(𝑥), (𝑖𝑖)

𝑦 iv (𝑥) = 𝑥𝑦′′′(𝑥) + 𝑦′′(𝑥) + 2𝑦′′(𝑥) = 𝑥𝑦′′′(𝑥) + 3𝑦′′(𝑥), (𝑖𝑖𝑖)

𝑦v(𝑥) = 𝑥𝑦 iv (𝑥) + 𝑦′′′(𝑥) + 3𝑦′′′(𝑥) = 𝑥𝑦 iv (𝑥) + 4𝑦′′′(𝑥), (𝑖𝑣)

𝑦vi (𝑥) = 𝑥𝑦v(𝑥) + 𝑦 iv (𝑥) + 4𝑦 iv (𝑥) = 𝑥𝑦v(𝑥) + 5𝑦 iv (𝑥), (𝑣)

 

and similarly for higher derivatives. Putting 𝑥 = 0 in (ii) to (v), we obtain 

𝑦′′′(0) = 2𝑦′(0) = 0, 𝑦iv(0) = 3𝑦′′(0) = 3, 𝑦v(0) = 0, 𝑦vi(0) = 5. 

By Taylor's series, we have 

𝑦(𝑥) =𝑦(0) + 𝑥𝑦′(0) +
𝑥2

2
𝑦′′(0) +

𝑥3

6
𝑦′′′(0) +

𝑥4

24
𝑦 iv (0)

 +
𝑥5

120
𝑦v(0) +

𝑥6

720
𝑦vi(0) + ⋯

 

Hence 
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𝑦(0.1) = 1 +
(0.1)2

2
+
(0.1)4

24
(3) +

(0.1)6

720
(5) +⋯

 = 1 + 0.005 + 0.0000125, neglecting the last term 

 = 1.0050125, correct to seven decimal places. 

 

4.3 Picard's Method of Successive Approximations 

Integrating the differential equation  𝑦 = 𝑦0 + ∫  
𝑥

𝑥0
 𝑓(𝑥, 𝑦)𝑑𝑥  ……… (1) 

Equation (1), in which the unknown function 𝑦 appears under the integral sign, is called an 

integral equation. Such an equation can be solved by the method of successive 

approximations in which the first approximation to 𝑦 is obtained by putting 𝑦0 for 𝑦 on right 

side of Equation (1), and we write 

𝑦(1) = 𝑦0 +∫  
𝑥

𝑥0

𝑓(𝑥, 𝑦0)𝑑𝑥 

The integral on the right can now be solved and the resulting 𝑦(1) is substituted for 𝑦 in the 

integrand of Eq. (1) to obtain the second approximation 𝑦(2) : 

𝑦(2) = 𝑦0 +∫  
𝑥

𝑥0

𝑓(𝑥, 𝑦(1))𝑑𝑥 

Proceeding in this way, we obtain 𝑦(3), 𝑦(4), … , 𝑦(𝑛−1) and 𝑦(𝑛), where 

𝑦(𝑛) = 𝑦0 +∫  
𝑥

𝑥0

 𝑓(𝑥, 𝑦(𝑛−1))𝑑𝑥  with 𝑦(0) = 𝑦0………(2)  

Hence this method yields a sequence of approximations 𝑦(1), 𝑦(2), … , 𝑦(𝑛) and it can be 

proved (see, for example, the book by Levy and Baggot) that if the function 𝑓(𝑥, 𝑦) is 

bounded in some region about the point (𝑥0, 𝑦0) and if 𝑓(𝑥, 𝑦) satisfies the Lipschitz 

condition, viz., 

|𝑓(𝑥, 𝑦) − 𝑓(𝑥, 𝑦‾)| ≤ 𝐾|𝑦 − 𝑦‾|𝐾 being a constant …… . . (3)  

then the sequence 𝑦(1), 𝑦(2), … converges to the solution of Eq. (1) of 4.2. 

Example 1: 

Solve the equation 𝑦′ = 𝑥 + 𝑦2, subject to the condition 𝑦 = 1 when 𝑥 = 0. 

We start with 𝑦(0) = 1 and obtain 

𝑦(1) = 1+ ∫  
𝑥

0

(𝑥 + 1)𝑑𝑥 = 1 + 𝑥 +
1

2
𝑥2 

Then the second approximation is 
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𝑦(2) = 1 + ∫  
𝑥

0

  [𝑥 + (1 + 𝑥 +
1

2
𝑥2)

2

] 𝑑𝑥

 = 1 + 𝑥 +
3

2
𝑥2 +

2

3
𝑥3 +

1

4
𝑥4 +

1

20
𝑥5

 

It is obvious that the integrations might become more and more difficult as we proceed to 

higher approximations. 

Example 2: 

 Given the differential equation 
𝑑𝑦

𝑑𝑥
=

𝑥2

𝑦2+1
 

with the initial condition 𝑦 = 0 when 𝑥 = 0, use Picard's method to obtain 𝑦 for 𝑥 = 0.25,0.5 

and 1.0 correct to three decimal places. 

We have 

𝑦 = ∫  
𝑥

0

𝑥2

𝑦2 + 1
𝑑𝑥 

Setting 𝑦(0) = 0, we obtain 

𝑦(1) = ∫  
𝑥

0

𝑥2𝑑𝑥 =
1

3
𝑥3 

and 

𝑦(2) = ∫  
𝑥

0

𝑥2

(1/9)𝑥6 + 1
𝑑𝑥 = tan−1 (

1

3
𝑥3) =

1

3
𝑥3 −

1

81
𝑥9 +⋯ 

so that 𝑦(1) and 𝑦(2) agree to the first term, viz., ( 1/3)𝑥3. To find the range of values of 𝑥 so 

that the series with the term (1/3)𝑥3 alone will give the result correct to three decimal 

places, we put 

1

81
𝑥9 ≤ 0.0005 

which yields 

𝑥 ≤ 0.7 

Hence 

𝑦(0.25) =
1

3
(0.25)3 = 0.005

𝑦(0.5) =
1

3
(0.5)3 = 0.042

𝑦(1.0) =
1

3
−
1

81
= 0.321
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4.4 Euler's Method: 

We have so far discussed the methods which yield the solution of a differential equation in 

the form of a power series. We will now describe the methods which give the solution in the 

form of a set of tabulated values. 

Suppose that we wish to solve the Equations. (1) of 4.2 for values of 𝑦 at 𝑥 = 𝑥𝑟 = 𝑥0 +

𝑟ℎ(𝑟 = 1,2,… ). Integrating Eq. (1) of 4.2, we obtain 

 𝑦1 = 𝑦0 + ∫  
𝑥1

𝑥0
 𝑓(𝑥, 𝑦)𝑑𝑥   …………(1) 

Assuming that 𝑓(𝑥, 𝑦) = 𝑓(𝑥0, 𝑦0) in 𝑥0 ≤ 𝑥 ≤ 𝑥1, this gives Euler's formula 

𝑦1 ≈ 𝑦0 + ℎ𝑓(𝑥0, 𝑦0).……… (1𝑎)  

Similarly for the range 𝑥1 ≤ 𝑥 ≤ 𝑥2, we have 

𝑦2 = 𝑦1 +∫  
𝑥2

𝑥1

𝑓(𝑥, 𝑦)𝑑𝑥 

Substituting 𝑓(𝑥1, 𝑦1) for 𝑓(𝑥, 𝑦) in 𝑥1 ≤ 𝑥 ≤ 𝑥2 we obtain 

𝑦2 ≈ 𝑦1 + ℎ𝑓(𝑥1, 𝑦1).…… . (1𝑏)  

Proceeding in this way, we obtain the general formula 

𝑦𝑛+1 = 𝑦𝑛 + ℎ𝑓(𝑥𝑛, 𝑦𝑛), 𝑛 = 0,1,2, …  ……… (2)  

The process is very slow and to obtain reasonable accuracy with Euler's method, we need to 

take a smaller value for ℎ. Because of this restriction 

on ℎ, the method is unsuitable for practical use and a modification of it, known as the 

modified Euler method, which gives more accurate results, will be described in Section 3.4.2. 

Example 1: 

To illustrate Euler's method, we consider the differential equation 𝑦′ = −𝑦 with the condition 

𝑦(0) = 1. 

Successive application of Equation (2) with ℎ = 0.01 gives 

𝑦(0.01) = 1 + 0.1(−1) = 0.99

𝑦(0.02) = 0.99 + 0.01(−0.99) = 0.9801

𝑦(0.03) = 0.9801 + 0.01(−0.9801) = 0.9703

𝑦(0.04) = 0.9703 + 0.01(−0.9703) = 0.9606

 

The exact solution is 𝑦 = 𝑒−𝑥 and from this the value at 𝑥 = 0.04 is 0.9608 . 

4.4.1 Error Estimates for the Euler Method: 

Let the true solution of the differential equation at 𝑥 = 𝑥𝑛 be 𝑦(𝑥𝑛) and also let the 

approximate solution be 𝑦𝑛. Now, expanding 𝑦(𝑥𝑛+1) by Taylor's series, we get 
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𝑦(𝑥𝑛+1) = 𝑦(𝑥𝑛) + ℎ𝑦
′(𝑥𝑛) +

ℎ2

2
𝑦′′(𝑥𝑛) +⋯ 

𝑦(𝑥𝑛+1) = 𝑦(𝑥𝑛) + ℎ𝑦
′(𝑥𝑛) +

ℎ2

2
𝑦′′(𝜏𝑛) +⋯    where 𝑥𝑛 ≤ 𝜏𝑛 ≤ 𝑥𝑛+1  ………..(3) 

We usually encounter two types of errors in the solution of differential equations. These are 

(i) local errors, and (ii) rounding errors. The local error is the result of replacing the given 

differential equation by means of the equation 

𝑦𝑛+1 = 𝑦𝑛 + ℎ𝑦𝑛
′  

This error is given by 𝐿𝑛+1 = −
1

2
ℎ2𝑦′′(𝜏𝑛)   ……….(4) 

The total error is then defined by 𝑒𝑛 = 𝑦𝑛 − 𝑦(𝑥𝑛)  ………..(5) 

Since 𝑦0 is exact, it follows that 𝑒0 = 0. 

Neglecting the rounding error, we write the total solution error as 

𝑒𝑛+1 = 𝑦𝑛+1 − 𝑦(𝑥𝑛+1)

 = 𝑦𝑛 + ℎ𝑦𝑛
′ − [𝑦(𝑥𝑛) + ℎ𝑦

′(𝑥𝑛) − 𝐿𝑛+1]

 = 𝑒𝑛 + ℎ[𝑓(𝑥𝑛 , 𝑦𝑛) − 𝑦
′(𝑥𝑛)] + 𝐿𝑛+1.

 

⇒ 𝑒𝑛+1 = 𝑒𝑛 + ℎ[𝑓(𝑥𝑛 , 𝑦𝑛) − 𝑓(𝑥𝑛, 𝑦(𝑥𝑛))] + 𝐿𝑛+1. 

By mean value theorem, we write 

𝑓(𝑥𝑛, 𝑦𝑛) − 𝑓(𝑥𝑛 , 𝑦(𝑥𝑛)) = [𝑦𝑛 − 𝑦(𝑥𝑛)]
𝜕𝑓

𝜕𝑦
(𝑥𝑛, 𝜉𝑛), 𝑦(𝑥𝑛) ≤ 𝜉𝑛 ≤ 𝑦𝑛 

Hence, we have 

𝑒𝑛+1 = 𝑒𝑛[1 + ℎ𝑓𝑦(𝑥𝑛 , 𝜉𝑛)] + 𝐿𝑛+1  ……… (6)  

Since 𝑒0 = 0, we obtain successively: 

𝑒1 = 𝐿1;  𝑒2 = [1 + ℎ𝑓𝑦(𝑥1, 𝜉1)]𝐿1 + 𝐿2;

𝑒3 = [1 + ℎ𝑓𝑦(𝑥2, 𝜉2)][1 + ℎ𝑓𝑦(𝑥1, 𝜉1)](𝐿1 + 𝐿2) + 𝐿3;  etc. 
 

See the book by Isaacson and Keller [1966] for more details. 

Example 2:  

We consider, again, the differential equation 𝑦′ = −𝑦 with the condition 𝑦(0) = 1, which we 

have solved by Euler's method in Example 1. 

Choosing ℎ = 0.01, we have 

1 + ℎ𝑓𝑦(𝑥𝑛, 𝜉𝑛) = 1 + 0.01(−1) = 0.99 

and 

𝐿𝑛+1 = −
1

2
ℎ2𝑦′′(𝜌𝑛) = −0.00005𝑦(𝜌𝑛) 
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In this problem, 𝑦(𝜌𝑛) ≤ 𝑦(𝑥𝑛), since 𝑦′ is negative. Hence we successively obtain 

|𝐿1| ≤ 0.00005 = 5 × 10
−5

|𝐿2| ≤ (0.00005)(0.99) < 5 × 10
−5

|𝐿3| ≤ (0.00005)(0.9801) < 5 × 10
−5

 

and so on. For computing the total solution error, we need an estimate of the rounding error. 

If we neglect the rounding error, i.e., if we set 

𝑅𝑛+1 = 0 

then using the above bounds, we obtain from Eq. (8.12) the estimates 

𝑒0 = 0

|𝑒1| ≤ 5 × 10
−5

|𝑒2| ≤ 0.99𝑒1 + 5 × 10
−5 < 10−4

|𝑒3| ≤ 0.99𝑒2 + 5 × 10
−5 < 10−4 + 5 × 10−5

|𝑒4| ≤ 0.99𝑒3 + 5 × 10
−5 < 10−4 + 10−4 = 2 × 10−4 = 0.0002

 

 

It can be verified that the estimate for 𝑒4 agrees with the actual error in the value of 𝑦(0.04) 

obtained in Example 1. 

4.4.2 Modified Euler's Method: 

Instead of approximating 𝑓(𝑥, 𝑦) by 𝑓(𝑥0, 𝑦0) in Equation (1) of 4.4, we now approximate 

the integral given in Eq. (8.6) by means of trapezoidal rule to obtain 

𝑦1 = 𝑦0 +
ℎ

2
[𝑓(𝑥0, 𝑦0) + 𝑓(𝑥1, 𝑦1)] (7) 

We thus obtain the iteration formula 

𝑦1
(𝑛+1)

= 𝑦0 +
ℎ

2
[𝑓(𝑥0, 𝑦0) + 𝑓(𝑥1, 𝑦1

(𝑛)
)] , 𝑛 = 0,1,2, … (8) 

where 𝑦1
(𝑛)

 is the 𝑛th approximation to 𝑦1. The iteration formula (8.14) can be started by 

choosing 𝑦1
(0)

 from Euler's formula: 

𝑦1
(0)
= 𝑦0 + ℎ𝑓(𝑥0, 𝑦0) 

Example 3: 

Determine the value of 𝑦 when 𝑥 = 0.1 given that 𝑦(0) = 1  and  𝑦′ = 𝑥2 + 𝑦 

We take ℎ = 0.05. With 𝑥0 = 0 and 𝑦0 = 1.0, we have 𝑓(𝑥0, 𝑦0) = 1.0. Hence Euler's 

formula gives 𝑦1
(0)
= 1 + 0.05(1) = 1.05 

Further, 𝑥1 = 0.05 and 𝑓(𝑥1, 𝑦1
(0)
) = 1.0525. The average of 𝑓(𝑥0, 𝑦0) and 𝑓(𝑥1, 𝑦1

(0)
) is 

1.0262 . The value of 𝑦1
(1)

 can therefore be computed by using Equation (8) and we obtain 
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𝑦1
(1)
= 1.0513 

Repeating the procedure, we obtain 𝑦1
(2)
= 1.0513. Hence we take 𝑦1 = 1.0513, which is 

correct to four decimal places. 

Next, with 𝑥1 = 0.05, 𝑦1 = 1.0513 and ℎ = 0.05, we continue the procedure to obtain 𝑦2, 

i.e., the value of 𝑦 when 𝑥 = 0.1. The results are 

𝑦2
(0)
= 1.1040, 𝑦2

(1)
= 1.1055, 𝑦2

(2)
= 1.1055 

Hence we conclude that the value of 𝑦 when 𝑥 = 0.1 is 1.1055 . 

4.5 Runge-Kutta Methods: 

As already mentioned, Euler's method is less efficient in practical problems since it requires ℎ 

to be small for obtaining reasonable accuracy. The 

Runge-Kutta methods are designed to give greater accuracy and they possess the advantage 

of requiring only the function values at some selected points on the subinterval. 

If we substitute 𝑦1 = 𝑦0 + ℎ𝑓(𝑥0, 𝑦0) on the right side of Eq. (7) of 4.4.2, we obtain 

𝑦1 = 𝑦0 +
ℎ

2
[𝑓0 + 𝑓(𝑥0 + ℎ, 𝑦0 + ℎ𝑓0)] 

where 𝑓0 = 𝑓(𝑥0, 𝑦0). If we now set 

𝑘1 = ℎ𝑓0  and  𝑘2 = ℎ𝑓(𝑥0 + ℎ, 𝑦0 + 𝑘1) 

then the above equation becomes  

𝑦1 = 𝑦0 +
1

2
(𝑘1 + 𝑘2)     ………..(1) 

which is the second-order Runge-Kutta formula. The error in this formula can be shown to be 

of order ℎ3 by expanding both sides by Taylor's series. Thus, the left side gives 

𝑦0 + ℎ𝑦0
′ +

ℎ2

2
𝑦0
′′ +

ℎ3

6
𝑦0
′′′ +⋯ 

and on the right side 

𝑘2 = ℎ𝑓(𝑥0 + ℎ, 𝑦0 + ℎ𝑓0) = ℎ [𝑓0 + ℎ
𝜕𝑓

𝜕𝑥0
+ ℎ𝑓0

𝜕𝑓

𝜕𝑦0
+ O(ℎ2)]. 

Since 

𝑑𝑓(𝑥, 𝑦)

𝑑𝑥
=
𝜕𝑓

𝜕𝑥
+ 𝑓

𝜕𝑓

𝜕𝑦
 

we obtain 

𝑘2 = ℎ[𝑓0 + ℎ𝑓0
′ + O(ℎ2)] = ℎ𝑓0 + ℎ

2𝑓0
′ + O(ℎ3) 

so that the right side of Equation (1) gives 
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𝑦0 +
1

2
[ℎ𝑓0 + ℎ𝑓0 + ℎ

2𝑓0
′ + O(ℎ3)] = 𝑦0 + ℎ𝑓0 +

1

2
ℎ2𝑓0

′ + O(ℎ3)

 = 𝑦0 + ℎ𝑦0
′ +

ℎ2

2
𝑦0
′′ + O(ℎ3)

 

It therefore follows that the Taylor series expansions of both sides of Equation (1) agree up to 

terms of order ℎ2, which means that the error in this formula is of order ℎ3. 

More generally, if we set 

where 𝑦1 = 𝑦0 +𝑊1𝑘1 +𝑊2𝑘2 ………(2a) 

𝑘1 = ℎ𝑓0
𝑘2 = ℎ𝑓(𝑥0 + 𝛼0ℎ, 𝑦0 + 𝛽0𝑘1)

}……… . . (2𝑏) 

then the Taylor series expansions of both sides of the last equation in (2a) gives the identity 

𝑦0 + ℎ𝑓0 +
ℎ2

2
(
𝜕𝑓

𝜕𝑥
+ 𝑓0

𝜕𝑓

𝜕𝑦
) + O(ℎ3) =𝑦0 + (𝑊1 +𝑊2)ℎ𝑓0

 +𝑊2ℎ
2 (𝛼0

𝜕𝑓

𝜕𝑥
+ 𝛽0𝑓0

𝜕𝑓

𝜕𝑦
) + O(ℎ3)

 

Equating the coefficients of 𝑓(𝑥, 𝑦) and its derivatives on both sides, we obtain the relations 

𝑊1 +𝑊2 = 1,𝑊2𝛼0 =
1

2
,𝑊2𝛽0 =

1

2
. …… . (3)  

Clearly, 𝛼0 = 𝛽0 and if 𝛼0 is assigned any value arbitrarily, then the remaining parameters 

can be determined uniquely. If we set, for example, 𝛼0 = 𝛽0 = 1, then we immediately 

obtain 𝑊1 = 𝑊2 = 1/2, which gives formula equation(1). 

It follows, therefore, that there are several second-order Runge-Kutta formulae and that 

formulae equations (2) and (3) constitute just one of several such formulae. 

Higher-order Runge-Kutta formulae exist, of which we mention only the fourth-order 

formula defined by 

𝑦1 = 𝑦0 +𝑊1𝑘1 +𝑊2𝑘2 +𝑊3𝑘3 +𝑊4𝑘4  ……… . (4𝑎)  

where 

𝑘1 = ℎ𝑓(𝑥0, 𝑦0)

𝑘2 = ℎ𝑓(𝑥0 + 𝛼0ℎ, 𝑦0 + 𝛽0𝑘1)

𝑘3 = ℎ𝑓(𝑥0 + 𝛼1ℎ, 𝑦0 + 𝛽1𝑘1 + 𝑣1𝑘2)

𝑘4 = ℎ𝑓(𝑥0 + 𝛼2ℎ, 𝑦0 + 𝛽2𝑘1 + 𝑣2𝑘2 + 𝛿1𝑘3),}
 

 

………(4𝑏)  

where the parameters have to be determined by expanding both sides of the first equation of 

(4a) by Taylor's series and securing agreement of terms up to and including those containing 

ℎ4. The choice of the parameters is, again, arbitrary and we have therefore several fourth-

order Runge-Kutta formulae. If, for example, we set 
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𝛼0 = 𝛽0 =
1

2
, 𝛼1 =

1

2
, 𝛼2 = 1,

𝛽1 =
1

2
(√2 − 1), 𝛽2 = 0

𝑣1 = 1 −
1

√2
, 𝑣2 = −

1

√2
, 𝛿1 = 1 +

1

√2
,

𝑊1 = 𝑊4 =
1

6
, 𝑊2 =

1

3
(1 −

1

√2
) , 𝑊3 =

1

3
(1 +

1

√2
) ,
}
 
 
 
 

 
 
 
 

……………(5)  

we obtain the method of Gill, whereas the choice 

𝛼0 = 𝛼1 =
1

2
, 𝛽0 = 𝑣1 =

1

2
𝛽1 = 𝛽2 = 𝑣2 = 0, 𝛼2 = 𝛿1 = 1

𝑊1 = 𝑊4 =
1

6
, 𝑊2 = 𝑊3 =

2

6}
 
 

 
 

………… . . (6)  

leads to the fourth-order Runge-Kutta formula, the most commonly used one in practice: 

𝑦1 = 𝑦0 +
1

6
(𝑘1 + 2𝑘2 + 2𝑘3 + 𝑘4)  ……… (7𝑎)  

where 

𝑘1 = ℎ𝑓(𝑥0, 𝑦0)

𝑘2 = ℎ𝑓 (𝑥0 +
1

2
ℎ, 𝑦0 +

1

2
𝑘1)

𝑘3 = ℎ𝑓 (𝑥0 +
1

2
ℎ, 𝑦0 +

1

2
𝑘2)

𝑘4 = ℎ𝑓(𝑥0 + ℎ, 𝑦0 + 𝑘3) }
 
 

 
 

………… . (7𝑏)  

in which the error is of order ℎ5. Complete derivation of the formula is exceedingly 

complicated, and the interested reader is referred to the book by Levy and Baggot. We 

illustrate here the use of the fourth-order formula by means of examples. 

Example 1: 

Given 𝑑𝑦/𝑑𝑥 = 𝑦 − 𝑥 where 𝑦(0) = 2, find 𝑦(0.1) and 𝑦(0.2) correct to four decimal 

places. 

(i) Runge-Kutta second-order formula: With ℎ = 0.1, we find 𝑘1 = 0.2 and 𝑘2 = 0.21. 

Hence 

𝑦1 = 𝑦(0.1) = 2 +
1

2
(0.41) = 2.2050 

To determine 𝑦2 = 𝑦(0.2), we note that 𝑥0 = 0.1 and 𝑦0 = 2.2050. Hence, 𝑘1 =

0.1(2.105) = 0.2105 and 𝑘2 = 0.1(2.4155 − 0.2) = 0.22155. 

It follows that 
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𝑦2 = 2.2050 +
1

2
(0.2105 + 0.22155) = 2.4210 

Proceeding in a similar way, we obtain 

𝑦3 = 𝑦(0.3) = 2.6492  and  𝑦4 = 𝑦(0.4) = 2.8909 

We next choose ℎ = 0.2 and compute 𝑦(0.2) and 𝑦(0.4) directly. With ℎ = 0.2. 𝑥0 = 0 and 

𝑦0 = 2, we obtain 𝑘1 = 0.4 and 𝑘2 = 0.44 and hence y(0.2) = 2.4200. Similarly, we obtain 

𝑦(0.4) = 2.8880. 

From the analytical solution 𝑦 = 𝑥 + 1 + 𝑒𝑥, the exact values of 𝑦(0.2) and 𝑦(0.4) are 

respectively 2.4214 and 2.8918 . To study the order of convergence of this method, we 

tabulate the values as follows: 

𝑥 Computed 𝑦 Exact 𝑦 Difference Ratio 

0.2 ℎ = 0.1: 2.4210 2.4214 0.0004  

 ℎ = 0.2: 2.4200  0.0014 3.5 

0.4 ℎ = 0.1: 2.8909 2.8918 0.0009  

 ℎ = 0.2: 2.8880  0.0038 4.2 

     

 

It follows that the method has an ℎ2-order of convergence. 

(ii) Runge-Kutta fourth-order formula: To determine 𝑦(0.1), we have 𝑥0 = 0, 𝑦0 = 2 and 

ℎ = 0.1. We then obtain 

𝑘1 = 0.2
𝑘2 = 0.205
𝑘3 = 0.20525
𝑘4 = 0.21053

 

Hence 

𝑦(0.1) = 2 +
1

6
(𝑘1 + 2𝑘2 + 2𝑘3 + 𝑘4) = 2.2052 

Proceeding similarly, we obtain 𝑦(0.2) = 2.4214. 

Example 2:  

Given 𝑑𝑦/𝑑𝑥 = 1 + 𝑦2, where 𝑦 = 0 when 𝑥 = 0, find 𝑦(0.2), 𝑦(0.4) and 𝑦(0.6). 

We take ℎ = 0.2. With 𝑥0 = 𝑦0 = 0, we obtain from (8.21a) and (8.21b), 
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𝑘1 = 0.2

𝑘2 = 0.2(1.01) = 0.202

𝑘3 = 0.2(1 + 0.010201) = 0.20204

𝑘4 = 0.2(1 + 0.040820) = 0.20816

 

and 

𝑦(0.2) = 0 +
1

6
(𝑘1 + 2𝑘2 + 2𝑘3 + 𝑘4) = 0.2027 

which is correct to four decimal places. 

To compute 𝑦(0.4), we take 𝑥0 = 0.2, 𝑦0 = 0.2027 and ℎ = 0.2. With these values, 

Equations. (7a) and (7b) give 

𝑘1 = 0.2[1 + (0.2027)
2] = 0.2082,

𝑘2 = 0.2[1 + (0.3068)
2] = 0.2188,

𝑘3 = 0.2[1 + (0.3121)
2] = 0.2195,

𝑘4 = 0.2[1 + (0.4222)
2] = 0.2356,

 

And 𝑦(0.4) = 0.2027+ 0.2201 = 0.4228 

correct to four decimal places. 

Finally, taking 𝑥0 = 0.4, 𝑦0 = 0.4228 and ℎ = 0.2, and proceeding as above, we obtain 

𝑦(0.6) = 0.6841. 

Example 3: 

We consider the initial value problem 𝑦′ = 3𝑥 + 𝑦/2 with the condition 𝑦(0) = 1. 

The following table gives the values of 𝑦(0.2) by different methods, the exact value being 

1.16722193. It is seen that the fourth-order Runge-Kutta method gives the accurate value for 

ℎ = 0.05. 

Method ℎ Computed value 

Euler 0.2 1.10000000 

 0.1 1.13250000 

Modified Euler 0.05 1.14956758 

 0.2 1.10000000 

 0.1 1.15000000 

Fourth-order Runge-Kutta 0.2 1.16286242 
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 0.1 1.16722083 

 0.05 1.16722186 

   

 

Exercises: 

1.Given 
𝑑𝑦

𝑑𝑥
= 1 + 𝑥𝑦,  y(0)=1, obtain the Taylor series for y(x) and compute y(0,1),   

   correct to four decimal places. 

2. Use Picard’s method to obtain y(0.1) and y(0.2) of the problem defined by  

   
𝑑𝑦

𝑑𝑥
= 𝑥 + 𝑦𝑥4, y(0)=3. 

3. Using Euler’s method, solve the following problems: 

    (a) 
𝑑𝑦

𝑑𝑥
=
3

5
𝑥3𝑦, y(0)=1 

    (b) 
𝑑𝑦

𝑑𝑥
= 1 + 𝑦2, y(0)=0 

4.Solve, by Euler’s modified method, the problem 
𝑑𝑦

𝑑𝑥
= 𝑥 + 𝑦, y(0)=0. 

   Choose h=0.2 and compute y(0.2) and y(0.4). 

5. Use Runge-Kutta fourth order formula to find y(0.2) and y(0.4) given that  

    𝑦′ =
𝑦2−𝑥2

𝑦2+𝑥2
 , y(0)=1. 
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Unit V 

Numerical Solutions of Ordinary Differential Equations: Predictor Corrector method – 

Milne’s Method – Adams-Bash forth method.  

Chapter 5: Sections– 5.1 to 5.3 

5.1 Predictor-Corrector Methods: 

In the methods described so far, to solve a differential equation over a single interval, say from 

𝑥 = 𝑥𝑛 to 𝑥 = 𝑥𝑛+1, we required information only at the beginning of the interval, 

i.e. at 𝑥 = 𝑥𝑛. Predictor-corrector methods are the ones which require function values at 

𝑥𝑛 , 𝑥𝑛−1, 𝑥𝑛−2, … for the computation of the function value at 𝑥𝑛+1 A predictor formula is used 

to predict the value of 𝑦 at 𝑥𝑛+1 and then a corrector formula is used to improve the value of 

𝑦𝑛+1. 

In Section 5.2 we describe Milne's method which uses forward differences and 

in Section 5.3 we derive Predictor-corrector formulae which use backward differences  

5.2. Milne's Method: 

This method uses Newton's forward difference formula in the form 

𝑓(𝑥, 𝑦) = 𝑓0 + 𝑛Δ𝑓0 +
𝑛(𝑛 − 1)

2
Δ2𝑓0 +

𝑛(𝑛 − 1)(𝑛 − 2)

6
Δ3𝑓0 +⋯ ……… . . (1)                          

Substituting Equation (1) in the relation 𝑦4 = 𝑦0 + ∫  
𝑥4

𝑥0
 𝑓(𝑥, 𝑦)𝑑𝑥 ……….(2) 

we obtain 

𝑦4 = 𝑦0 +∫  
𝑥4

𝑥0

  [𝑓0 + 𝑛Δ𝑓0 +
𝑛(𝑛 − 1)

2
Δ2𝑓0 +⋯] 𝑑𝑥

 = 𝑦0 + ℎ∫  
4

0

 [𝑓0 + 𝑛Δ𝑓0 +
𝑛(𝑛 − 1)

2
Δ2𝑓0 +⋯] 𝑑𝑛

 = 𝑦0 + ℎ (4𝑓0 + 8Δ𝑓0 +
20

3
Δ2𝑓0 +

8

3
Δ3𝑓0 +⋯)

 

= 𝑦0 +
4ℎ

3
(2𝑓1 − 𝑓2 + 2𝑓3)   ………..(3) 

after neglecting fourth- and higher-order differences and expressing differences Δ𝑓0, Δ
2𝑓0 and 

Δ3𝑓0 in terms of the function values. 

This formula can be used to 'predict' the value of 𝑦4 when those of 𝑦0, 𝑦1, 𝑦2 and 𝑦3 are 

known. To obtain a 'corrector' formula, we substitute Newton's formula from (1) in the 

relation 𝑦2 = 𝑦0 + ∫  
𝑥2

𝑥0
 𝑓(𝑥, 𝑦)𝑑𝑥     ………….. (4) 
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and get 

𝑦2 = 𝑦0 + ℎ∫  
2

0

  [𝑓0 + 𝑛Δ𝑓0 +
𝑛(𝑛 − 1)

2
Δ2𝑓0 +⋯] 𝑑𝑛

 = 𝑦0 + ℎ (2𝑓0 + 2Δ𝑓0 +
1

3
Δ2𝑓0 +⋯)

 

= 𝑦0 +
ℎ

3
(𝑓0 + 4𝑓1 + 𝑓2)   ……….. (5) 

The value of 𝑦4 obtained from Equation (3) can therefore be checked by using Equation (5). 

The general form of Equations. (3) and (5) are: 

𝑦𝑛+1
p

= 𝑦𝑛−3 +
4ℎ

3
(2𝑓𝑛−2 − 𝑓𝑛−1 + 2𝑓𝑛) 

And 𝑦𝑛+1
c = 𝑦𝑛−1 +

ℎ

3
(𝑓𝑛−1 + 4𝑓𝑛 + 𝑓𝑛+1) 

The application of this method is illustrated by the following example. 

Example 1:  

Solve 𝑦′ = 1+ 𝑦2 with 𝑦(0) = 0 and we wish to compute 𝑦(0.8) and 𝑦(1.0). 

Solution: 

With ℎ = 0.2, the values of 𝑦(0.2), 𝑦(0.4) and 𝑦(0.6) are computed and these values are 

given in the table below: 

 

𝑥 𝑦 𝑦′ = 1 + 𝑦2 

0 0 1.0 

0.2 0.2027 1.0411 

0.4 0.4228 1.1787 

0.6 0.6841 1.4681 

 

To obtain 𝑦(0.8), we use Equation (3) and obtain 

𝑦(0.8) = 0 +
0.8

3
[2(1.0411) − 1.1787 + 2(1.4681)] = 1.0239 
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This gives 

𝑦′(0.8) = 2.0480 

To correct this value of 𝑦(0.8), we use formula equation (5) and obtain 

𝑦(0.8) = 0.4228 +
0.2

3
[1.1787 + 4(1.4681) + 2.0480] = 1.0294 

Proceeding similarly, we obtain 𝑦(1.0) = 1.5549. The accuracy in the values of 𝑦(0.8) and 

𝑦(1.0) can, of course, be improved by repeatedly using formula equation (3). 

Example 2: 

The differential equation 𝑦′ = 𝑥2 + 𝑦2 − 2 satisfies the following data: 

𝑥 𝑦 

-0.1 1.0900 

0 1.0000 

0.1 0.8900 

0.2 0.7605 

 

Use Milne's method to obtain the value of 𝑦(0.3). 

We first form the following table: 

𝑥 𝑦 𝑦′ = 𝑥2 + 𝑦2 − 2 

-0.1 1.0900 -0.80190 

0 1.0 -1.0 

0.1 0.8900 -1.19790 

0.2 0.7605 -1.38164 

 

Using Equation (3), we obtain 

𝑦(0.3) = 1.09 +
4(0.1)

3
[2(−1) − (−1.19790) + 2(−1.38164)] = 0.614616 

In order to apply Equation (5), we need to compute 𝑦′(0.3). We have 

𝑦′(0.3) = (0.3)2 + (0.614616)2 − 2 = −1.532247 

Now, Equation (5) gives the corrected value of 𝑦(0.3) : 

𝑦(0.3) = 0.89 +
0.1

3
[−1.197900 + 4(−1.38164) + (−1.532247)] = 0.614776 
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5.3. Adams-Moulton Method: 

Newton's backward difference interpolation formula can be written as 

𝑓(𝑥, 𝑦) = 𝑓0 + 𝑛∇𝑓0 +
𝑛(𝑛 + 1)

2
∇2𝑓0 +

𝑛(𝑛 + 1)(𝑛 + 2)

6
∇3𝑓0 +⋯ (1) 

where 

𝑛 =
𝑥 − 𝑥0
ℎ

  and  𝑓0 = 𝑓(𝑥0, 𝑦0) 

If this formula is substituted in 𝑦1 = 𝑦0 + ∫  
𝑥1

𝑥0
 𝑓(𝑥, 𝑦)𝑑𝑥  ……….(2) 

we get 

𝑦1 = 𝑦0 +∫  
𝑥1

𝑥0

  [𝑓0 + 𝑛∇𝑓0 +
𝑛(𝑛 + 1)

2
∇2𝑓0 +⋯]𝑑𝑥

 = 𝑦0 + ℎ∫  
1

0

  [𝑓0 + 𝑛∇𝑓0 +
𝑛(𝑛 + 1)

2
∇2𝑓0 +⋯]𝑑𝑛

 = 𝑦0 + ℎ (1 +
1

2
∇ +

5

12
∇2 +

3

8
∇3 +

251

720
∇4 +⋯)𝑓0

 

It can be seen that the right side of the above relation depends only on 𝑦0, 𝑦−1, 𝑦−2, …, all of 

which are known. Hence this formula can be used to compute 𝑦1. We therefore write it as 

𝑦1
p
= 𝑦0 + ℎ (1 +

1

2
∇ +

5

12
∇2 +

3

8
∇3 +

251

720
∇4 +⋯)𝑓0   ……….. (3) 

This is called Adams-Bashforth formula and is used as a predictor formula (the superscript p 

indicating that it is a predicted value). 

A corrector formula can be derived in a similar manner by using Newton's backward 

difference formula at 𝑓1 : 

𝑓(𝑥, 𝑦) = 𝑓1 + 𝑛∇𝑓1 +
𝑛(𝑛 + 1)

2
∇2𝑓1 +

𝑛(𝑛 + 1)(𝑛 + 2)

6
∇3𝑓1 +⋯……(4) 

Substituting Equation (4) in Equation (3), we obtain 

𝑦1 = 𝑦0 +∫  
𝑥1

𝑥0

  [𝑓1 + 𝑛∇𝑓1 +
𝑛(𝑛 + 1)

2
∇2𝑓1 +⋯]𝑑𝑥

 = 𝑦0 + ℎ∫  
0

1

  [𝑓1 + 𝑛∇𝑓1 +
𝑛(𝑛 + 1)

2
∇2𝑓1 +⋯] 𝑑𝑛

 

𝑦1 = 𝑦0 + ℎ (1 −
1

2
∇ −

1

12
∇2 −

1

24
∇3 −

19

720
∇4 −⋯) 𝑓1   ……….(5) 

The right side of Equation (5) depends on 𝑦1, 𝑦0, 𝑦−1, … where for 𝑦1 we use 𝑦1
p
, the predicted 

value obtained from (3). The new value of 𝑦1 thus obtained from Equation (5) is called the 

corrected value, and hence we rewrite the formula as 
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𝑦1
c = 𝑦0 + ℎ (1 −

1

2
∇ −

1

12
∇2 −

1

24
∇3 −

19

720
∇4 −⋯)𝑓1

p
     …………(6) 

This is called Adams-Moulton corrector formula the superscript c indicates that the value 

obtained is the corrected value and the superscript p on the right indicates that the predicted 

value of 𝑦1 should be used for computing the value of 𝑓(𝑥1, 𝑦1). 

In practice, however, it will be convenient to use formulae (3) and (6) by ignoring the higher-

order differences and expressing the lower order differences in terms of function values. 

Thus, by neglecting the fourth and higher-order differences, formulae (3) and (6) can be 

written as 𝑦1
p
= 𝑦0 +

ℎ

24
(55𝑓0 − 59𝑓−1 + 37𝑓−2 − 9𝑓−3)    ………… (7) 

And 𝑦1
c = 𝑦0 +

ℎ

24
(9𝑓1

p
+ 19𝑓0 − 5𝑓−1 + 𝑓−2)   …………. (8) 

in which the errors are approximately 

251

720
ℎ5𝑓0

(4)
  and  −

19

720
ℎ5𝑓0

(4)
 respectively.  

The general forms of formulae (7) and (8) are given by 

𝑦𝑛+1
p

= 𝑦𝑛 +
ℎ

24
[55𝑓𝑛 − 59𝑓𝑛−1 + 37𝑓𝑛−2 − 9𝑓𝑛−3]   

And 𝑦𝑛+1
c = 𝑦𝑛 +

ℎ

24
[9𝑓𝑛+1

p
+ 19𝑓𝑛 − 5𝑓𝑛−1 + 𝑓𝑛−2] 

Such formulae, expressed in ordinate form, are often called explicit predictor corrector 

formulae. 

The values 𝑦−1, 𝑦−2 and 𝑦−3, which are required on the right side of Equation (7) are 

obtained by means of the Taylor's series, or Euler's method, or Runge-Kutta method. Due to 

this reason, these methods are called starter methods. For practical problems, Runge-Kutta 

fourth-order formula together with formulae (7) and (8) have been found to be the most 

successful combination. The following example will illustrate the application of this method. 

Example 1:  

We consider once again the differential equation given in Example 8.9 with the same 

condition, and we wish to compute 𝑦(0.8). 

Solution: 

For this example, the starter values are 𝑦(0.6), 𝑦(0.4) and 𝑦(0.2), which are already 

computed in Example by the fourth-order Runge-Kutta method. 
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 Using now Equation (7) with 𝑦0 = 0.6841, 𝑦−1 = 0.4228, 𝑦−2 = 0.2027 and 𝑦−3 = 0, we 

obtain 

𝑦p(0.8) =0.6841 +
0.2

24
{55[1 + (0.6841)2] − 59[1 + (0.4228)2]

+37[1 + (0.2027)2] − 9}

=1.0233, on simplification. 

 

Using this predicted value on the right side of Eq. (8.29), we obtain 

𝑦c(0.8) =0.6841+
0.2

24
{9[1 + (0.0233)2] + 19[1 + (0.6841)2]

−5[1 + (0.4228)2] + [1 + (0.2027)2]}
 

= 1.0296, which is correct to four decimal places 

The importance of the method lies in the fact that when once 𝑦1
p
 is computed from formula 

(7), formula (8) can be used iteratively to obtain the value of 𝑦1 to the accuracy required. 

 

Exercises: 

1.State Adam’s predictor – corrector formulae for the solution of the equation  

  𝑦′ = 𝑓(𝑥, 𝑦), 𝑦(𝑥0) = 𝑦0. Given the problem 𝑦′ + 𝑦 = 0, 𝑦(0) = 1. 

 Find y(0.1), y(0.2) and y(0.3) by Runge-Kutta fourth order formula and hence obtain y(0.4) 

by Adam’s formulae. 

2. State Milne’s predictor-corrector formulae for the solution of the problem  

     𝑦′ = 𝑓(𝑥, 𝑦), 𝑦(𝑥0) = 𝑦0. Given the initial value problem defined by 

     𝑦′ = 𝑦2 + 𝑥𝑦 , y(0)=1, find, by Taylor’s series, the values of y(0.1), y(0.2) and y(0.3).       

    Use these values to compute y(0.4) by Milne’s formulae. 
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3. Using Milne’s formula, find y(0.8) given that 

   
𝑑𝑦

𝑑𝑥
= 𝑥 − 𝑦2, y(0)=0, y(0.2)=0.02, y(0.4)=0.0795  and y(0.6)=0.1762. 
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